

Research and Innovation action H2020-MG-2016-2017

Mobility scenarios of car sharing: gap analysis and impacts in the cities of tomorrow

Deliverable D5.1

Version n° 1

<u>Authors</u>: POLITO Transport Research Group, with Andrea Chicco and Marco Diana as main authors (POLITO), Johannes Rodenbach (AUTON), Jeffrey Matthijs (AUTON), Gunnar Nehrke (bcs), Michael Ziesak (bcs), Marko Horvat (ICLEI)

www.stars-h2020.eu

This project has received funding from the Horizon 2020 programme under the grant agreement n°769513

DISCLAIMER

The content of this deliverable reflects only the author's view. The European Commission and INEA (Innovation and Networks Executive Agency) are not responsible for any use that may be made of the information it contains.

Document Information

Grant Agreement	769513	
Project Title	Shared mobility opporTunities And challenges foR European citieS	
Project Acronym	STARS	
Project Start Date	01 October 2017	
Related work package	WP 5 - Car sharing scenarios and benefits through co-modality	
Related task(s)	 Task 5.1 - New mobility market equilibria in the cities of tomorrow Task 5.2 - Quantification of impacts and identification of the "rupture scenario" Task 5.3 - Business as usual versus rupture scenarios of car sharing diffusion 	
Lead Organisation	POLITO	
Submission date	25/02/2020	
Dissemination Level	Public	

History

Date	Submitted by	Reviewed by	Version (Notes)
22/10/2019	Andrea Chicco (POLITO), Marco Diana (POLITO)		First draft of the document structure
15/11/2019	Johannes Rodenbach (AUTON)	Andrea Chicco (POLITO), Marco Diana (POLITO)	Description of the Belgian case study (par. 2.2.1)
15/11/2019	Marko Horvat (ICLEI)	Andrea Chicco (POLITO), Marco Diana (POLITO)	Method to assess the replicability of the case studies for uptake cities (par. 2.3) and results (chapter 7)
25/11/2019	Johannes Rodenbach (AUTON)	Andrea Chicco (POLITO), Marco Diana (POLITO)	Results from the Belgian case study (chapter 4)
02/12/2019	Johannes Rodenbach (AUTON)	Andrea Chicco (POLITO), Marco Diana (POLITO)	Insights from the Belgian case study (chapter 5)
18/12/2019	Michael Ziesak (bcs)	Andrea Chicco (POLITO), Marco Diana (POLITO)	English report of the Frankfurt study. POLITO frame it into D5.1 structure
20/12/2019	Andrea Chicco (POLITO)		First uncompleted draft sent to all STARS partners
17/01/2020	Johannes Rodenbach (AUTON)	Andrea Chicco (POLITO), Marco Diana (POLITO)	Minor changes in Belgian case study results and input for conclusions
20/01/2020	Marko Horvat (ICLEI)	Andrea Chicco (POLITO), Marco Diana (POLITO)	Updated results of chapter 7 based on feedbacks from uptake cities
04/02/2020	Andrea Chicco (POLITO), Marco Diana (POLITO)		First complete draft sent to all STARS partners
18/02/2020	Stefano Beccaria (GM), Johannes Rodenbach (AUTON), Marko Horvat (ICLEI), Michael Ziesak (bcs)	Andrea Chicco (POLITO), Marco Diana (POLITO)	First internal review
21/02/2020	Andrea Chicco (POLITO), Marco Diana (POLITO)		Version 1 - Final version of the deliverable

Table of content

SI	UMMARY	,	14
1	Introd	luction	18
2	Data d	collection and field activities	
-		ow to correctly consider car sharing impacts?	
	2.1.1	Sample self-selection and the issue of the causality effect	
	2.1.2	Identification of users, non-users and control groups	
	2.1.3	Person level versus trip level analysis	
		Jestionnaire contents	
	2.2.1	Travel behaviour and mobility habits	24
	2.2.2	Compact travel diary	24
	2.2.3	Changes in car ownership	25
	2.2.4	Socio-economic characterisation	
	2.3 Su	rvey implementation and local variants to the design	28
	2.3.1	Italian case study	28
	2.3.2	German case study	29
	2.3.3	Belgian case study	32
	2.4 M	ethod to assess the replicability of the case studies for "uptake" cities	35
3	Data a	analysis methods	37
		escriptive statistics, statistical testing and person-level analyses	
		odal switch models and trip-level analyses for the mobility scenarios	
		efinition of the five mobility scenarios	
	3.3.1	Business as usual scenario	42
	3.3.2	All switch scenario	43
	3.3.3	Rupture scenario	43
	3.3.4	All electric scenario	45
	3.3.5	No car sharing scenario	46
	3.4 Ev	aluation of the mobility scenarios	46
	3.4.1	Estimation of greenhouse gas and pollutants emissions in the different scenarios	47
	3.4.2	Economic evaluation of air pollutions and greenhouse gas externalities	49
	3.4.3	Estimation of the impacts on the use of public space due to modal diversion	50
	3.4.4	Impacts on travel times and congestion	52
4	Perso	n-level analysis: differences between users and non-users and among ca	ır
sł	naring fo	orms	53
	4.1 So	ciodemographic characterisation of respondents	53
	4.1.1	Car sharing members and non-members of the Italian case study	53
	4.1.2	Frankfurt car sharing users	
	4.2 Di	fferences and trends in car ownership	
	4.2.1	Cross sectional perspective: car ownership levels of users and non-users	
	4.2.2	Longitudinal perspective: changes in car ownership over time	
	4.2.3	Respondents' self-assessment of the influence of car sharing in car ownership-rel	ated
	decisio	ns	67

	4.2.4		
		ing in Frankfurt	
	4.2.5		
	4.3	PT season ticket ownership and bike sharing membership	
4	4.4 4.4. [^]	Differences in general mobility habits	
	4.4. 4.4.2		
	4.4.2		
	4.4.3 4.5	Non-users attitudes on car sharing	
		Insights on the optimal mix of car sharing variants to maximise person-level	
		its	100
	4.6.1		
	4.6.2		
-	T :	5	
5	ייי 5.1	b level analysis: mobility scenarios in Turin and Milan Definition of mobility scenarios to assess the car sharing potential	
:	5.1 .1		
	5.1.2		
	5.1.2		
	5.1.2		
	5.1.5		
		Insights on the optimal mix of different car sharing variants to maximise trip-le	
(enario 6.1	pacts of the rupture scenario and gap analysis with the business as usual o Impact on greenhouse emissions Impact on the emissions of pollutants	115
	6.2 6.3	Impact on public spaces	
7		arging the view beyond the STARS case studies: feedback from uptake citi	
	•••••		. 127
Сс	onclus	sions	
			. 128
Bi	bliog	raphy	
	-		. 132
Aŗ	opend	raphy lix 1: Travel survey questions list	. 132 . 136
Ap Ap	opend opend	raphy lix 1: Travel survey questions list lix 2: Local variants of the travel survey	. 132 . 136 . 164
Ap Ap	opend opend opend	raphy lix 1: Travel survey questions list lix 2: Local variants of the travel survey lix 3: Uptake cities questionnaires and aggregated answers	. 132 . 136 . 164 . 171
Ar Ar Ar	opend opend opend opend	raphy lix 1: Travel survey questions list lix 2: Local variants of the travel survey lix 3: Uptake cities questionnaires and aggregated answers lix 4: Matching results	. 132 . 136 . 164 . 171 . 176
Ak Ak Ak	opend opend opend opend opend	raphy lix 1: Travel survey questions list lix 2: Local variants of the travel survey lix 3: Uptake cities questionnaires and aggregated answers lix 4: Matching results lix 5: SP experiments details and estimation results of binomial logit	. 132 . 136 . 164 . 171 . 176 . 179
Ar Ar Ar Ar	opend opend opend opend opend opend	raphy lix 1: Travel survey questions list lix 2: Local variants of the travel survey lix 3: Uptake cities questionnaires and aggregated answers lix 4: Matching results	. 132 . 136 . 164 . 171 . 176 . 179 :udy
Af Af Af Af Af	opend opend opend opend opend	raphy lix 1: Travel survey questions list lix 2: Local variants of the travel survey lix 3: Uptake cities questionnaires and aggregated answers lix 4: Matching results lix 5: SP experiments details and estimation results of binomial logit lix 6: Demographic characteristics of the samples within the Italian case st	. 132 . 136 . 164 . 171 . 176 . 179 . udy . 187

Appendix 9: Additional material used in the evaluation of greenhouse and pollutants emissions
Appendix 10: Costs evaluation of different mobility scenarios
Appendix 11: Air pollution emissions and derived costs of others scenarios
Appendix 12: Additional outcomes used in the evaluation of the impacts on public spaces

List of Tables

Table 1: Number of completed questionnaires collected in the Italian case study	29
Table 2: Respondents per car sharing variant in the Italian case study	29
Table 3: Number of completed questionnaires collected in the German case study	31
Table 4: Classification of the respondents in car sharing user groups	32
Table 5: Number of completed questionnaires collected in the Belgian case study	34
Table 6: Respondents per car sharing variant in the Belgian case study	35
Table 7: Candidate explanatory variables	40
Table 8: Car sharing average exhaust emissions in Milan and Turin	48
Table 9: Car fleet average exhaust emissions in Milan and Turin	49
Table 10: Average Italian air pollution costs in 2016 (source: European Commission, 2019)	49
Table 11: Impacts on parking events according to parking areas characteristics	51
Table 12: Differences in car ownership between car sharing members and non-members in Mila	an 58
Table 13: Differences in car ownership between car sharing members and non-members in Turi	n.59
Table 14: Current number of cars in household (including company cars) – panel survey and online survey	
Table 15: Current number of cars in household (including company cars) – surveys car sharing.	61
Table 16: Evolution of the number of cars in car sharing members households – Belgian full or survey	
Table 17: Differences in household car ownership levels – Belgian full online survey	64
Table 18: Disposal of cars after joining car sharing organisation – surveys car sharing operators	64
Table 19: Respondents likelihood of buying a car in case of car sharing shut down - answers the Italian case study	
Table 20: Probability of purchasing extra car if no car sharing member – Belgian car sharing opera surveys	
Table 21: Use frequency of different travel means – full online survey [car sharers N = 65 // nor sharers N = 110]	
Table 22: Use of transport means by Frankfurt car sharing users	87
Table 23: Change in mobility behaviour – full online survey in Belgium, only car sharing users 56]	
Table 24: Change in mobility behaviour – internal surveys car sharing operators	94
Table 25: Likelihood of becoming a car sharing member	98
Table 26: Modal split of the BAU scenario in Milan	. 104
Table 27: Modal split of the BAU scenario in Turin	. 104
Table 28: Potential trips switching to car sharing and modal split of the "All switch" scenario - N	
Table 29: Potential trips switching to car sharing and modal split of the "All switch" scenario – T	

Table 30: Potential trips switching to car sharing and modal split of the "Rupture" scenario	
Table 31: Potential trips switching to car sharing and modal split of the "Rupture" scenario	- Turin
Table 32: Alternatives to car sharing for the last trip - Milan (n = 472)	108
Table 33: Alternatives to car sharing for the last trip – Turin (n = 174)	108
Table 34: Declared alternative modes to substitute the absence of car sharing for the recorde Italian case study	
Table 35: Modal split of the "No car sharing scenario" in Milan	110
Table 36: Modal split of the "No car sharing scenario" in Turin	110
Table 37: Alternatives to car sharing for the last trip – Frankfurt	112
Table 38: Declared alternative modes to substitute the absence of car sharing for the recorde Frankfurt, only for those that declared "I would have used a different mode" in Table 37.	112
Table 39: Estimation of the fractions of trips diverted from private cars and additional car trips optimistic or pessimistic assumptions	113
Table 40: free-floating car sharing impact on CO ₂ emission in Milan	115
Table 41: free-floating car sharing impact on CO ₂ emission in Turin	116
Table 42: Car sharing impact on pollutants emission in Milan	118
Table 43: Economic evaluation of car sharing impact on pollutants emission in Milan	118
Table 44: Car sharing impact on pollutants emission in Turin	119
Table 45: Economic evaluation of car sharing impact on pollutants emission in Turin	120
Table 46: Daily economic savings for the cities of Milan and Turin deriving from the use of full car sharing fleets	
Table 47: CS impacts on daily parking events in street and in dedicated on-surface parking sp Milan	
Table 48: CS impacts on parking events in streets and in dedicated on-surface parking spaces of	
Table 49: Differences between STARS travel survey and other survey exploited within the Belgis study	
Table 50: List of variables used in the propensity score matching	176
Table 51: Walk to car sharing switching model - significant coefficients	183
Table 52: Walk to car sharing switching model - statistics	183
Table 53: Bike to car sharing switching model - significant coefficients	184
Table 54: Bike to car sharing switching model - statistics	184
Table 55: Car to car sharing switching model - significant coefficients	185
Table 56: Car to car sharing switching model - statistics	185
Table 57: PT to car sharing switching model - significant coefficients	186
Table 58: PT to car sharing switching model - statistics	186
Table 59: Key demographic characteristics of the Milan respondents	189
Table 60: Key demographic characteristics of the Turin respondents	191

Table 61: Features that would entice respondents to become car sharing member
Table 62: Car sharing fleet composition in Milan and Turin 202
Table 63: Private car fleet classification by EU emission standards and type of fuel [source http://www.opv.aci.it/WEBDMCircolante/]
Table 64: Exhaust emission factors for passenger cars 204
Table 65: Private cars composition in Milan and Turin in 2018 by year of registration
Table 66: Business as usual scenario estimated air pollution daily costs - Milan
Table 67: All switch scenario air pollution costs and GAP analysis with BAU scenario - Milan 219
Table 68: Rupture scenario air pollution costs and GAP analysis with BAU scenario - Milan
Table 69: All electric rupture scenario air pollution costs and GAP analysis with BAU scenario - Milar
Table 70: No car sharing scenario air pollution costs and GAP analysis with BAU scenario - Milan221
Table 71: Business as usual scenario estimated air pollution daily costs - Turin
Table 72: All switch scenario air pollution costs and GAP analysis with BAU scenario - Turin 222
Table 73: Rupture scenario air pollution costs and GAP analysis with BAU scenario - Turin
Table 74: All electric rupture scenario air pollution costs and GAP analysis with BAU scenario - Turir
Table 75: No car sharing scenario air pollution costs and GAP analysis with BAU scenario - Turin 223
Table 76: CS impacts on parking events resulting from the difference between rupture and BAL scenario in Milan
Table 77: CS impacts on parking events resulting from the difference between rupture and BAL scenario in Turin 224

List of Figures

Figure 1: Flowchart defining different cases of changes in car ownership20
Figure 2: Modal split in Milan (left side) and Turin (right side) estimated from the trips registered in the 2019 STARS survey
Figure 3: Private cars per 1000 people in selected user groups of the Frankfurt case study
Figure 4: Changes in the number of private cars of different user groups
Figure 5: Changes in car ownership of different car sharing user groups sampled in the inner-city residential areas and in the city as a whole
Figure 6: Car ownership changes perspectives of CS members within the Italian case study
Figure 7: Trend in car ownership without car sharing in Frankfurt user groups (excl. "does not know"
Figure 8: Agreement with the statement "Car sharing is a full-fledged substitute for one's own vehicle" in different user groups

Figure 9: Agreement with the statement "Car sharing is rather an additional option to one's own car" in different user groups
Figure 10: Differences in public transport season ticket ownership between car sharing members and non-members of the Italian case study74
Figure 11: Differences in public transport season ticket ownership between car sharing members and non-members of the Belgian case study75
Figure 12: Differences in bike sharing membership between car sharing members and non-members of the Italian case study
Figure 13: Differences in bike sharing membership between car sharing members and non-members of the Belgian case study
Figure 14: Changes in the possession of travel cards before registering with car sharing to date78
Figure 15: Use frequency of different travel modes – car sharing members and non-members of Milan
Figure 16: Use frequency of different travel modes – car sharing members and non-members of Turin
Figure 17: Car sharing use frequency among CS members of the Italian case study
Figure 18: Seasonal car sharing use frequency in Milan and Turin
Figure 19: Frequency of private car use as driver by Frankfurt car sharing users
Figure 20: Frequency of bicycle use in the everyday lives of Frankfurt car sharing users
Figure 21: Frequency of bicycle use for purposes of leisure of Frankfurt car sharing users
Figure 22: Frequency of public transport use by Frankfurt car sharing users
Figure 23: Frequency of car sharing use by Frankfurt users91
Figure 24: Changes in travel habits after joining car sharing within the Italian case study
Figure 25: Change in use of private car since participating in car sharing (without "I cannot say")95
Figure 26: Change in the use of public transportation since participating in car sharing (without "I cannot say")
Figure 27: Non-use of public transport at their place of residence
Figure 28: Change in the use of bicycles after registering with car sharing (without "I cannot say") 97
Figure 29: Daily parking events evaluation in the city of Milan (Rupture-BAU scenario) 122
Figure 30: Parking events evaluation in the city of Turin (Rupture-BAU scenario)
Figure 31: Car sharing members and control group before the matching procedure - Milan 176
Figure 32: Car sharing members and control group after the matching procedure – Milan 177
Figure 33: Car sharing members and control group before and after the matching procedure - Turin
Figure 34: Trip cost functions used in the SP experiments
Figure 35: Trip duration functions used in the SP experiments
Figure 36: Positive switch from walking to car sharing coming from SP experiments
Figure 37: Positive switch from bike to car sharing coming from SP experiments
Figure 38: Positive switch from car to car sharing coming from SP experiments
Figure 39: Positive switch from public transport to car sharing coming from SP experiments 182

Figure 40: Average CO2 emissions from new passenger cars	
Figure 41: CO₂ emissions cost [€] in Milan scenarios	
Figure 42: Delta CO ₂ emissions cost [€] in Milan (BAU – Rupture scenarios)	207
Figure 43: NMVOC emissions cost [€] in Milan scenarios	208
Figure 44: Delta NMVOC emissions cost [€] in Milan (BAU – Rupture scenarios)	208
Figure 45: NO _x emissions cost [€] in Milan scenarios	209
Figure 46: Delta NO _x emissions cost [€] in Milan (BAU – Rupture scenarios)	209
Figure 47: NH₃ emissions cost [€] in Milan scenarios	210
Figure 48: Delta NH ₃ emissions cost [€] in Milan (BAU – Rupture scenarios)	210
Figure 49: PM _{2.5} emissions cost [€] in Milan scenarios	211
Figure 50: Delta PM _{2.5} emissions cost [€] in Milan (BAU – Rupture scenarios)	211
Figure 51: Total emissions costs [€] and identification of the Rupture scenario in Milan	212
Figure 52: Total costs difference between BAU and Rupture scenario in Milan [€]	212
Figure 53: CO ₂ emissions cost [€] in Turin scenarios	213
Figure 54: Delta CO₂ emissions cost [€] in Turin (BAU – Rupture scenarios)	213
Figure 55: NMVOC emissions cost [€] in Turin scenarios	
Figure 56: Delta NMVOC emissions cost [€] in Turin (BAU – Rupture scenarios)	
Figure 57: NO _x emissions cost [€] in Turin scenarios	
Figure 58: Delta NO _x emissions cost [€] in Turin (BAU – Rupture scenarios)	
Figure 59: NH₃ emissions cost [€] in Turin scenarios	
Figure 60: Delta NH₃ emissions cost [€] in Turin (BAU – Rupture scenarios)	
Figure 61: PM _{2.5} emissions cost [€] in Turin scenarios	
Figure 62: Delta PM _{2.5} emissions cost [€] in Turin (BAU – Rupture scenarios)	
Figure 63: Total emissions costs [€] and identification of the Rupture scenario in Turin	
Figure 64: Total costs difference between BAU and Rupture scenario in Turin[€]	

Acronyms

ACI	Automobile Club d'Italia	LTZ	Limited Traffic Zone
BL	Binomial Logit	NH₃	Ammonia
CATI	Computer Assisted Telephone Interview	NMVOC	Non-methane Volatile Organic Compounds
CAWI	Computer Assisted Web Interview	NO _x	Nitrogen oxides
СО	Carbon monoxide	PM _{2.5}	Particulate Matter
CO2	Carbon dioxide	PT	Public transport
CS	Car sharing	RTSB	Roundtrip station-based
FFOA	Free-floating with operational area	SP	Stated-Preferences
FFPS	Free-floating with pool stations		

SUMMARY

The present deliverable encompasses the work carried out by the STARS consortium in three different tasks, namely 5.1, 5.2 and 5.3. The main objective is to give more insights about what role car sharing services would play in cities of tomorrow, especially in tackling the environmental and climate impacts deriving from the whole transport system and in improving the use of public spaces.

In particular, this work evaluates the potential role of different kinds of car sharing services, as defined in previous STARS deliverable 2.1 (Rodenbach, Mathijs, Chicco, Diana, & Nehrke, 2018), in satisfying the travel demand needs of European cities. Attention is paid not only to estimate the potential market share of such services, but to clarify the substitution patterns that will potentially decrease the travel demand for all competing modes (active means, private cars and public transport). Differently from existing studies, this document seeks to clarify substitution and complementarities at the individual trip level. Furthermore, impacts that each system has on car ownership, mobility habits and the consumption of public space are investigated in three different case studies, adding new insights to the previous findings of STARS deliverable 4.1 (Bergstad et al., 2018).

Travel demand models are used to evaluate different car sharing scenarios and therefore to assess the impact of car sharing on air pollutants emissions, use of public spaces and congestion. The quantification of these impacts leads the STARS consortium to individuate the rupture scenario, which represents the mobility scenario where car sharing benefits are maximised. In order to evaluate the maximum benefits, a gap analysis between the predicted scenarios and the business as usual one, defined in the previous STARS deliverable 2.3 (Chicco, Diana, Rodenbach, Mathijs, & Nehrke, 2018), is carried out.

In order to reach such objectives, a mobility survey has been designed, implemented and distributed among different European cities individuated within each case study. The questionnaire contents allowed us to cover many car sharing aspects, which can be divided in two main lines of research: on the one hand, person-level analyses that allows to evaluate what impacts car sharing is producing on personal (or household) and long-term mobility choices, such as the subscription to other mobility services, the ownership of public transport season passes or the reduction of private car ownership and how these changes are influencing the use frequency of different travel modes.

On the other hand, trip-level analyses focus on everyday mobility decisions and how these latter are impacted by the use of car sharing. The number of trips that might be performed with shared cars was therefore estimated, along with the related environmental, congestion and parking demand impacts of those potential switches.

The main findings of this deliverable at person-level are:

- ★ In the three case studies, in general, the number of cars owned by car sharing members on average is lower compared to non-members.
- ★ Results from Frankfurt and the Belgian case study confirm that car ownership among roundtrip station-based users is far lower than among free-floating users. In particular, freefloating users have the same level of car ownership of non-users in Frankfurt. However, car ownership level of free-floating car sharing members is significantly lower if they are using station-based and/or combined models at the same time.
- ★ Roundtrip and combined car sharing users reported that the most significant changes took place between one year before registration and the time of the registration.
- ★ It is, however, hard to state people own fewer cars due to car sharing. It can also be the other way around: people that decided to own fewer cars for whatever reason use car sharing as a replacement. Although roundtrip and combined car sharing customers in interviewed in the Frankfurt case study seem to consider these car sharing models to be a full-fledged substitute for their own car, carsharing is only seldomly the one cause to abandon a car. Reasons to abandon a car are manifold and the existence of the car sharing offer is only one among them.
- ★ Almost no changes in car ownership took place among free-floating users of the three case studies: customers of free-floating offerings had the same number of cars as they did 12 months before registering with car sharing.
- ★ Free-floating car sharing members interviewed within the Italian case study even reported a slight increase in the number of cars owned. However, framing this result in the car ownership trends of the whole population, it can be noted that the growth rate of cars owned by car sharing members is smaller than that of non-members. Thus, car sharing might have a higher impact on postponing the purchase of additional cars.
- ★ Roundtrip and combined services seem to have a dramatic impact on car ownership compared to free-floating ones, but on the other hand, a lower number of members. Therefore, there is a clear trade-off between the market penetration of a service and its impact in terms of car ownership changes for its customers, such that the aggregate impacts at the level of the overall urban area could be of the same order of magnitude.
- ★ The ideal situation would be a complete complementarity of the different car sharing schemes, which would happen if these are more appealing to quite different market segments both in terms of individuals and of mobility patterns. In such a case, the estimated aggregated impacts would sum up and the policy indication would be to promote both as much as possible, keeping in mind that a massive number of customers needs to be reached for free-floating to have an appreciable effect, whereas more targeted and "in-depth" actions are appropriate for station-based services, since they can radically change the mobility styles of their customers.

- ★ The analysis of public transport season ticket ownership led to slightly different results among case studies, but in general car sharing users have more transit passes than non users. Therefore, having a dense and reliable public transport offer seems to be more relevant than car sharing membership.
- ★ When differences in PT season tickets were analysed (Frankfurt case study) it is notable that the number of public transport annual passes has increased in almost all groups since registering for car sharing.
- ★ Much higher bike sharing membership is reported among car sharing members, proving that this group is more open to sharing all transport modes, not only cars.
- ★ Apart from ownership of PT season passes and other mobility membership (bike sharing and so on), car sharing members more frequently use active modes and public transport than non-members.
- ★ Differences in the use of private cars as drivers are encountered among car sharing user groups: more than 80% of users of the roundtrip and combined systems use their own car (almost) never or less than monthly; a further 8% drive a private car less frequently than once a week. By contrast, 43.9% of users registered exclusively for free-floating services drive a private car (almost) daily.

Trip-level outcomes presented in this deliverable derive from the Italian case study only, which refers to free-floating car sharing services. The main findings are:

- ★ The application of switch models shows that, globally, free-floating car sharing has the potential to attract up to 8.6% of the current daily travel demand estimated from Milan respondents and up to 9.5% of the Turin daily travel demand.
- ★ According to the model explanatory variables, the rupture scenario might be reached by changing car sharing and private car costs, which should induce citizens to adopt more sustainable transport modes.
- ★ The car sharing rupture scenario in both Italian cities analysed would generate an increase of CO₂ emissions along with a reduction of all main pollutants, which are however negligible compared to the amount currently produced.
- ★ Anyway, this can be evaluated in economic terms as saving for both cities (about 8827€ in Milan and 3607€ in Turin every day), which is obtained by summing up the savings produced by the reduction of pollutants' emissions and the cost deriving from the increase in CO₂ emissions.
- ★ Greenhouse gas and air pollutants emissions might be even lower (at least at the tailpipe), if current fleets would be substituted with electric ones (such reductions can be quantified in savings of 26000€ and 13000€ for the cities of Milan and Turin respectively).
- ★ On the other hand, a scenario in which car sharing does not exist anymore would produce higher costs for society compared to the current situation.

★ Concerning the use of public spaces, in the rupture scenario free-floating car sharing might produce positive impacts on daily parking events central areas, therefore where mobility attractors are concentrated.. On the contrary, higher negative impacts on both on-street and dedicated parking events might be encountered in more peripheral areas.

1 Introduction

STARS

Car sharing is one of the first mobility services constituting the ever-growing shared mobility ecosystem. The phenomenon has growth dramatically during the last decade in European cities, due to the advent of new enabling technologies, the increasing cost of the ownership and the paradigm switch that lead to the concept of mobility-as-a-service, already showed in previous STARS deliverables (Rodenbach et al., 2018; Sanvicente, Kielmanowicz, Rodenbach, Chicco, & Ramos, 2018). Car sharing is steadily growing year by year, in line with the service providers' expectations presented in (Chicco et al., 2018) and as confirmed in some other studies (Ciuffini et al., 2019).

Previous STARS studies have investigated the differences in car sharing business models and which impacts car sharing might have on the automotive and automobility sectors (Wells, Liu, & Beccaria, 2018; Wells, Tart, Beccaria, & Sanvicente, 2018). In addition, other STARS researches focus on the behavioural factors that affect the decision to enrol in car sharing, showing that the level of past carbased travel and trust in the quality of the service delivered are strong predictors. On the contrary, the number of car sharing operators in the city was not a predictor of behaviour. Only increasing the number of operators within cities or fleet sizes would not be enough to induce a behavioural change, while it became evident that it is necessary to increase the perceived usefulness of car sharing services for people's travel necessities (Bergstad et al., 2018; Ramos et al., 2019).

Beyond the car sharing growth and the behavioural elements that enhance its usefulness and therefore its use, it is important to try to understand the impacts that car sharing is having on both travel behaviours and on the environment, in order to correctly define transport policies that might maximise its benefits. In fact, several studies have analysed car sharing impacts on congestion and public spaces (Clewlow, 2016). Some of them reported that car sharing reduces car ownership (Becker, Ciari, & Axhausen, 2018; Ko, Ki, & Lee, 2019; E. Martin & Shaheen, 2016), as long as the service has a high level of reliability (Schreier et al., 2018b). As a consequence, car sharing might reduce the need of parking space (Millard-Ball, Murray, ter Schure, Fox, & Burkhardt, 2005) and it may produce additional traffic-relieving effects, such as the reduction of the congestion (Dowling & Kent, 2015), and vehicle-miles travelled (E. Martin & Shaheen, 2016). Moreover, if car sharing services are provided with electric vehicles, they contribute to decrease air pollutions emissions (Hu, Lin, Xie, Chen, & Shi, 2018), even promoting the acceptance of private electric vehicles (Schlüter & Weyer, 2019).

However, the possibility of achieving these positive impacts depends on the type of car sharing service analysed and on the context where car sharing is operating (rural or urban area). Especially in urban areas, where all forms of car sharing could be encountered (namely free-floating, roundtrip

station-based, roundtrip homezone-based and peer-to-peer car sharing), the impacts of each service may vary depending on the combination with other shared mobility services (car sharing and beyond) and with the public transport offer (Bergstad et al., 2018).

In addition, in order to understand substitution and complementarity patterns deriving from the adoption of car sharing, it is crucial where travel demand is originated (Chapleau, Gaudette, & Spurr, 2019; Heilig, Mallig, Hilgert, Kagerbauer, & Vortisch, 2017). Car sharing should not erode travel demand from more sustainable modes (e.g. active means and public transport) indeed. However changes in travel demand, and in particular for public transport, after the introduction of car sharing are often reported (Clewlow, 2016), even with contrasting results (Ceccato & Diana, 2018). Understanding these relationships is therefore useful for both policy makers, whose target is to promote sustainable travels, and car sharing providers, who aim to increase as much as possible the use of their fleets.

Beyond previous works where changes in travel habits are observed in before-after scenarios (Ko et al., 2019; E. Martin & Shaheen, 2016; Shaheen, Cohen, & Chung, 2010), some authors tried to forecast car sharing potential demand through the use of models, which allow to predict both membership (Costain, Ardron, & Habib, 2012; Efthymiou & Antoniou, 2016) and future trips (Heilig et al., 2017; Rotaris, Danielis, & Maltese, 2019). However, some studies were focused on a specific sample of the population, such as students, thus results cannot be generalised (Rotaris et al., 2019). Furthermore models trip predictions were not considering the travel modes previously used (El Zarwi, Vij, & Walker, 2017; Li, Liao, Timmermans, Huang, & Zhou, 2018), thus without giving information about the substitution relationships. Finally, modelling results sometimes are not used to quantify car sharing impacts in under different scenarios (Costain et al., 2012; Heilig et al., 2017).

Given the above state of the art, we aim to answer the following question: what role car sharing services can play in cities of tomorrow to minimise the environmental and climate impacts of transport systems and to help relieving infrastructural congestion?

This main question can be appropriately answered by looking at the impacts both at the personal level, i.e. how car sharing influences long term mobility related choices, and at the trip level, i.e. the impacts in everyday travel. Concerning the person level analysis, the car sharing impacts on car ownership are obviously of key interest and they will be mainly assessed in this report. Additional research questions are the following: What are the impacts on the ownership of public transport season passes and on other mobility subscriptions (such as bike sharing)? Are mobility habits of car sharing users different compared to non-users? How do they change after the car sharing subscription? Do car sharing users of different service typologies behave differently? Is there an optimal mix of car sharing services that might increase the positive impacts of such changes?

On the other hand, considering trip level aspects we want to determine modal diversion patterns from existing services to car sharing. Related open issues are the following: Which are the impacts in terms of air pollution and greenhouse gas emissions deriving to these changes? Which are the impacts on public spaces and on congestion? How can we quantify these impacts and determine the scenario that maximise the positive impacts of car sharing?

In order to give answers to the above research questions, this deliverable is structured in seven main sections, including this one. The six remainder are the following:

- ★ Section 2 describes the design and implementation of the STARS mobility survey used to gather the data in three different case studies, which are at the basis of all the analysis carried out in this document. Study areas selected within case studies were urban areas with a good public transport network and where different car sharing typologies coexists. The use of different European cities was considered a plus to check for eventual differences. In this section, firstly some issues related to the correct identification of the impacts of car sharing services that constitute the conceptual framework of the survey are discussed, then questionnaire contents are presented (2.2). Furthermore, due to different local conditions among the three case studies, minor changes made in the survey contents are described (2.3). The last part of this section assesses to which extent the proposed investigation could be expanded to additional cities with different settings, with particular reference to the uptake cities that were identified in the project (2.4).
- ★ Section 3 presents the methodologies used to analyse both person-level and trip-level information. The former allows understanding the car sharing impacts on mobility choices and car ownership levels and changes, while the latter allows quantifying substitution and complementarity patterns between transport modes through the definition of a set of mobility scenarios and to quantify car sharing potential impacts on air pollution, use of public space and congestion.
- ★ Section 4 presents the results from the person-level analyses of the three case studies. In particular, the section starts with a brief description of the user characteristics in the different case studies (4.1). Then car ownership levels and trends are presented (4.2), followed by the impacts of car sharing on public transport season tickets ownership and bike sharing membership (4.3). Furthermore, car sharing users mobility habits and their changes after subscription are presented (4.4), along with the assessment of some car sharing features by non-members' (4.5). The section ends giving some insights about the optimal mix of car sharing variants to be implanted in an urban area, based on person-level impacts in terms of car ownership that were estimated in the three case studies.
- ★ Section 5 presents the results of the trip-level analyses that were carried out on the Italian dataset only, because of the lack of detailed information about the last trip performed in the two other case studies. In particular, the potential travel demand that might be attracted by car sharing in some mobility scenarios built under different conditions is presented (5.1). Like

the previous section 4, also this section ends by giving some insights on the optimal mix of car sharing variants that might increase the benefits of such systems at the individual trip level (5.2).

- ★ Section 6 completes the results from section 5 by showing the impacts in terms of air pollution and greenhouse gas production of different car sharing scenario, individuating the rupture scenario (6.1 and 6.2). This scenario is defined on the basis of the economic quantification of those impacts and its maximisation compared to the business as usual scenario (gap analysis). In the last part of this section, impacts on public spaces are quantified within the rupture scenario (6.3).
- ★ Section 7 closes the document with the feedback received from the uptake cities about how the project contents and results helped them to understand, on the one hand, what kind of mobility options are available in terms of shared mobility and in particular of car sharing, and on the other hand, what are positive and negative impacts of different car sharing variants, as well as what conditions they still have to achieve in order to introduce the optimal car sharing mix in their city.

The general findings of the whole research activity are then summarised in the conclusions.

2 Data collection and field activities

The first activity of WP5 was the design and implementation of a mobility survey aimed at understanding the impacts of car sharing on mobility habits, changes in car ownership and in the use of public spaces. Additionally, this survey provided the information needed to define some car sharing scenarios, where car sharing impacts are analysed considering daily trip patterns. The population targets were people with a car driving licence living in some European cities where different car sharing variants are available (as defined in previous STARS deliverables) together with a good public transport offer. As discussed in the introduction, it is essential to address those people that have a real choice of different travel modes to correctly assess car sharing impacts.

Section 2.1 discusses some issues related to the correct identification of the impacts of car sharing services that constitute the conceptual framework of the survey, while section 2.2 presents the questionnaire contents. The survey format followed the cross-sectional travel survey standard practice (BMVI, 2019; Cornick, Cant, Byron, Templeton, & Hurn, 2019; Ortúzar & Willumsen, 2011) adding specific car sharing questions in line with some existing studies (Ceccato & Diana, 2018; Schreier et al., 2018a).

The STARS members directly involved in this activity decided to administer the questionnaire mainly through a web survey (with additional telephone interviews in one case), with minor changes in the contents related to local conditions, in three case studies depicted in the below section 2.3. Section 2.4 assesses to which extent the proposed investigation could be expanded to additional cities with different settings, with particular reference to the uptake cities that were identified in the project.

2.1 How to correctly consider car sharing impacts?

2.1.1 Sample self-selection and the issue of the causality effect

Along with the issues related to the use of web surveys, such as selection bias and under-coverage (Bethlehem, 2010), sample self-selection needs to be considered to understand if observed differences in characteristics and behaviours of respondents might be imputable to car sharing membership.

The sample self-selection bias can arise when research participants choose their own treatment condition, in this case the fact of subscribing or not to a car sharing service, rather than being randomly assigned to one of the two groups (i.e. users and non-users) as it usually happens for example in clinical studies. Due to self-selection, there may be significant differences in covariates (e.g. the number of vehicle owned) between the group of people who decided to be car sharing members and those who have not, independent on the fact that a car sharing service is existing and

in use. For example, respondents enrolled to a CS service might have owned less cars anyway (E. Martin, Shaheen, & Lidicker, 2010; E. W. Martin & Shaheen, 2011; Mishra, Clewlow, Mokhtarian, & Widaman, 2015). Thus, self-selection bias affects the evaluation of whether or not a given treatment (car sharing membership) has a causal effect on differences observed between users and non-users samples.

To reduce the effects of self-selection, the matched sampling strategy was used in the survey. Matched sampling consists in identifying a control group that is similar to the treated group with respect to the distribution of observed covariates, so that the resulting differences in outcomes between the groups may be attributed to the treatment under study, i.e. car sharing membership in our problem (Ho & Rubin, 2011; Rosenbaum & Rubin, 1985).

2.1.2 Identification of users, non-users and control groups

As the survey was targeted to both car sharing members or non-members, a propensity score-based matching algorithm was used to create the matched sample. The propensity score, defined as the probability of receiving treatment conditional on the covariates, is calculated for each observation using a logistic regression model based on several covariates. Unlike those models that aim to predict probabilities parsimoniously, all potential confounders should be included in the specification of propensity score models (Mishra et al., 2015). In this study, since the control group is used to compare different levels of car ownership, frequency of use of transport means, season ticket ownership and bike sharing membership, the covariates where selected among an array of socioeconomic characteristics (please refer to Appendix 4 for detailed information).

Finally, a nearest-neighbour matching algorithm based on the smallest propensity score difference was used. The matching was undertaken using the MatchIt package in R (Ho, Imai, King, & Stuart, 2007, 2011). Due to the sample dimensions, the algorithm was set to find one control match for each individual in the treatment group. At each matching step, the unmatched control individual that is closest to the treated individual on the distance measure was chosen.

2.1.3 Person level versus trip level analysis

As mentioned in the introduction many studies focus on the characterisation of car sharing users according to their socioeconomic characteristics, on the effects of car sharing membership on users' travel habits and on changes in mobility choices, including car ownership decisions. These aspects were also covered in this study since information at both person and household level were collected. However, differently from existing studies that consider rather aggregate measures of mobility, the aim of this study was also to evaluate the role of car sharing in terms of substitution and complementarity patterns (which might change the travel demand for all competing modes) at the

individual trip level. Therefore trip level information was collected partially following the current best practices (Ortúzar & Willumsen, 2011), as far as collecting data with that level of detail did not make too hard to convince a sufficiently large sample of individuals to participate to the survey. For this reason, the focus has been only on one trip rather than on all trips completed in a given time period through the compilation of a full travel diary.

Such trip level information allowed quantitatively evaluating the car sharing impacts in terms of congestion, greenhouse gas and pollutants emissions and all those parameters that are related to the trip distances, through a definition of a set of mobility scenarios. In order to do that, data coming from this survey have been complemented with information coming from a set of SP experiments contained in another dataset, which was available at Politecnico di Torino. Please refer to par. 2.2 for more information about the collected trip data and to par. 3.2 for details on the analyses performed with them.

2.2 Questionnaire contents

Before starting to answer the questions, participants were informed about the purpose of the project, the leading institutions involved in the project and whom they could contact for additional information. Moreover, respondents were informed that their answers would be made anonymously and stored encrypted in agreement with Regulation (EU) 2016/679 of the European Parliament on the protection of natural persons with regard to the processing of personal data.

The questionnaire consisted of 56 questions divided into four sections. Filters were applied in accordance with respondents' answers in order to avoid questions that did not apply for a respondent circumstance. Please refer to Appendix 1 for the full list of questions, while in the following we recap the four sections.

2.2.1 Travel behaviour and mobility habits

In this section, the questions were focused on the use frequency of different travel modes, public transport (PT) season ticket ownership, car sharing and bike sharing membership and, for CS members only, on the changes of travel habits after the registration to a car sharing service.

2.2.2 Compact travel diary

Only information about the last trip performed with car sharing (for users) and with any other travel mode (non-users) was asked in order to achieve the highest possible response rate (minimising the non-response bias). Additionally, the used means of transport, the trip duration and the trip purpose were collected in this section, along with the GPS positions of trip origin and destination that were recorded through an interactive map on which the respondents could click.

On the one hand this approach substantially reduces the time required to complete the survey (compared to traditional travel diaries); on the other hand, fewer trips are recorded and they might be biased if there is no control on the time when the survey is administered (e.g. if all respondents take the survey in evening hours, work back home trips will be mainly collected).

2.2.3 Changes in car ownership

In this section, the number of cars owned at the household level at the time of the interview was firstly asked and stored in a variable named HH_CAR_NOW. Then, information about past car ownership levels was collected according to the status of the respondent.

Car sharing members had to state the number of cars at the household level in two other periods, namely at the time of the first registration to a car sharing service (variable HH_CAR_REG) and one year before the first registration (variable HH_CAR_BACK), in line with (Schreier et al., 2018b). On the one hand, changes in car ownership levels after the subscription, which can be captured by comparing the values of HH_CAR_NOW and HH_CAR_REG, might be a consequence of the subscription itself whereas, on the other hand, changes shortly before the subscription are observed by comparing HH_CAR_REG and HH_CAR_BACK and they might be the reason behind the decision of becoming a member of a car sharing service. Therefore different combinations of changes might happen especially considering before the registration periods (e.g. one could reduce the number of cars owned within one year before the registration and increase it after the registration). Those cases are defined in the right part of the flowchart reported in Figure 1 below.

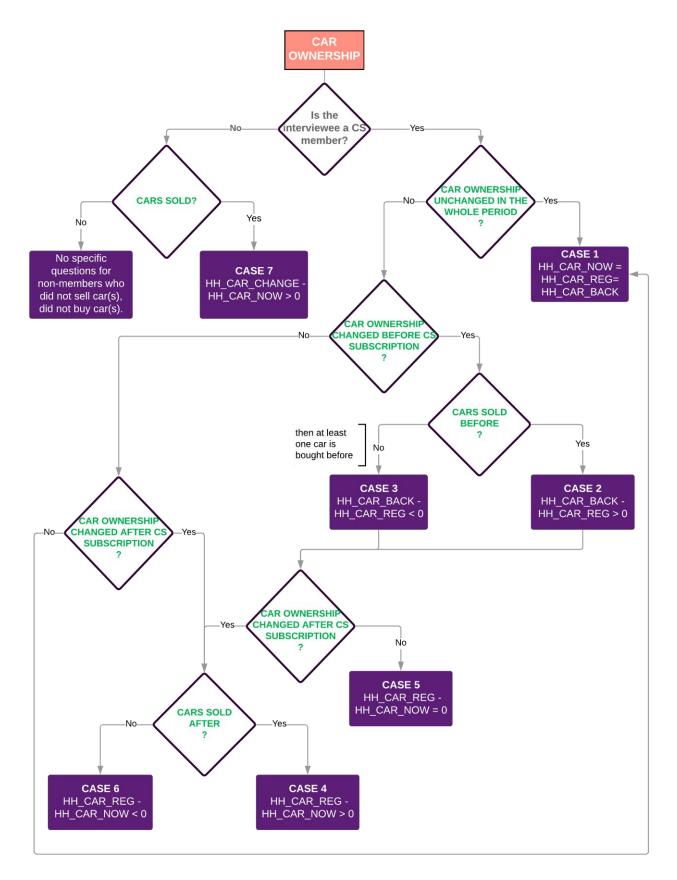


Figure 1: Flowchart defining different cases of changes in car ownership

Nine cases have been evaluated for car sharing users according to what is presented in Figure 1. Three of them are simple cases (Case 1, Case 4 and Case 6), while the remainder is obtained as a combination of one of these simple cases plus an additional one, namely either Case 2, or Case 3, or Case 5:

- ★ Case 1: the number of cars is unchanged in the whole period (since one year before the first car sharing registration);
- ★ Case 4: the number of cars decreased after the first registration to a car sharing service (no changes before such registration);
- ★ Case 6: the number of cars increased after the first registration to a car sharing service (no changes before such registration);
- ★ Case 2 + Case 4: the number of cars decreased both before and after the first registration to a car sharing service;
- ★ Case 2 + Case 5: the number of cars decreased before the first registration to a car sharing service, but it did not change after;
- ★ Case 2 + Case 6: the number of cars decreased before the first registration to a car sharing service, while it increased after;
- ★ Case 3 + Case 4: the number of cars increased before the first registration to a car sharing service, while it decreased after;
- ★ Case 3 + Case 5: the number of cars increased before the first registration to a car sharing service, but it did not change after;
- ★ Case 3 + Case 6: the number of cars increased both before and after the first registration to a car sharing service.

Those cases have been already described in section 3.3 of the STARS Deliverable 6.1 (Melis et al., 2019) and are not reported here. However, specific questions aimed at understanding to what extent car sharing subscription affected or might affect the decision of selling, not changing or even buying a car were asked for all cases, and they will be analysed in section 4.2.

Concerning non-members, the survey asked the number of cars owned the last time when a change in the number of cars occurred in the respondent's household. Furthermore, non-members were asked to rate the importance of car sharing improvements on specific aspects that might influence their future registration to car sharing.

Finally, in order to evaluate the impact of car sharing on the use of infrastructures and public spaces, questions about where household cars are usually parked were asked to both car sharing members and non-members.

2.2.4 Socio-economic characterisation

In this section, both individual and household socio-economic characteristics of the respondent were asked. Besides, a specific question about the number of car sharing members within the household was inserted in order to understand the impact of car sharing membership on household car ownership.

2.3 Survey implementation and local variants to the design

2.3.1 Italian case study

The cities selected within the Italian case study were Milan and Turin. The former represents the Italian city with the largest car sharing services offer, in terms of operational schemes that coexist (free-floating and roundtrip station-based services), fleet dimensions and number of customers (Ciuffini et al., 2019). The latter, despite the lower number of services (3) is one of the main car sharing market in Italy. In addition, data of the city of Turin were already collected through another survey carried out in a previous study (Ceccato & Diana, 2018), and they will be used to calibrate some switching models in the following (paragraph 3.2).

In order to obtain a representative sample of the population living in the two cities of the Italian case study, the complete version of the survey was administered by an external poll firm, which could rely on more than 60000 panellists in the whole Italy. Sampling and weighting methods were employed to match citywide individual population distributions on two key demographic variables, namely gender and age. Both computer-assisted web interviews (CAWI) and computer-assisted telephone interviews (CATI) were used to maximise the coverage.

Along with those respondents who declared of being enrolled in a car sharing service that was encountered by chance during the survey distribution, car sharing users were oversampled to obtain a more consistent group. The use of a panel allowed to gather answers from different users of car sharing, reducing the self-selection bias produced by the frequent-users answer rate (members that use the service more frequently are usually more willing to take part in a survey). However it was not possible to obtain a completely representative sample of the users' population since users of the services in Milan and Turin might live in other cities (even region).

The data collection activity started on the 13th of May 2019 and ended the 28th of the same month. During this period 1474 completed questionnaires were collected within the two cities: 666 respondents declared of being registered to a car sharing service while 808 did not. A breakdown of the collected answers is reported in Table 1 below.

City	Survey protocol	Members	Non- members	Total
Milan		485	553	1038
	CAWI	105	278	383
	CATI	75	275	350
	CAWI (oversampling)	305	0	305
Turin		181	255	436
	CAWI	40	140	180
	CATI	42	115	157
	CAWI (oversampling)	99	0	99
Total		666	808	1474

Table 1: Number of completed questionnaires collected in the Italian case study

Although the survey appeared quite long (56 questions according to the worse combination) the time of completion was about 16 minutes on average, therefore fatigue effects were not expected. Table 2 shows the number of car sharing users, split according to the car sharing variant according to the STARS classification (Ramos et al., 2019).

Car sharing variants	Milan	Turin	Total
Roundtrip station-based	9	0	9
Free-floating with an operational area	439	151	590
Free-floating with pool stations	0	14	14
MultiOC ¹	37	16	53
Total	485	181	666

Table 2: Respondents per car sharing variant in the Italian case study

Even if one of the objectives of the survey was to collect information about users of different car sharing variants, at least in Milan where all those variants exist, just a few users of station-based services were interviewed given the limited diffusion of such services. Thus, results coming out from the Italian case study, can only be referred to free-floating services.

2.3.2 German case study

The research area of this study encompasses the entire urban area of the city of Frankfurt am Main, defined by postal codes.

¹ As defined in (Ramos et al., 2019) MultiOC users are people enrolled to more than one car sharing service with different operational characteristics.

The city was chosen for the study because all the different car sharing systems have already existed here for many years, thus offering a different viewpoint from the above introduced Italian case studies where free-floating services prevail. The city of Frankfurt, with its 753056 inhabitants (as of 31/12/2018), is the fifth-largest city in Germany, covering an area of 248 km². In Frankfurt, seven providers operate a car sharing offer with a total of nearly 900 cars. Measured by the number of station-based vehicles, book-n-drive and stadtmobil Rhein-Main are by far the largest companies with station-based vehicles in Frankfurt. DB Connect (Flinkster) Ford Carsharing, Mazda Carsharing and Mobileeee augment this supply with additional cars. A total of 457 station-based cars are available. SHARENOW and book-n-drive operate another 440 cars as free-floating vehicles.

The data of the study were collected between the 28th of March 2019 and the 1st of May 2019 through a simplified web version of the travel survey described in 2.2. Car sharing members were mainly invited to take part in the survey per e-mail sent from the car sharing provider whose they were customer at the time of the survey distribution. The providers Stadtmobil Rhein-Main (Roundtrip station-based), book-n-drive (Combined roundtrip and free-floating car sharing) and Drivy (Peer-topeer) actively participate to the survey distribution, while the providers Flinkster (Station-based car sharing), SnappCar (Peer-to-peer) and Car2Go (Free-floating car sharing), which also operate in the urban area, did not take part in this study of the STARS project. Following the provider's rejection, Car2Go customers and non-members were invited by post to partake in the online survey.

The identification of customers living in the city area was undertaken by the car sharing providers. Here, the aim was to concentrate on private households. The providers were asked not to include members who were as pure business customers or employees of companies clearly identifiable.

A total of 16803 car sharing members in the city of Frankfurt am Main were contacted in writing by the providers.

Car sharing non-members were contacted using an address record containing 12297 postal addresses for private households in the urban area. The address record was compiled according to the following selection criteria: foreign language: German [Deutschland], aged 18 to 59, 16 selected postcode districts. Thus, respondents were asked at the beginning to give the postal code of their place of residence. On the one hand, this serves to ensure that only customers with a current residence in Frankfurt are taken into account in the evaluation. On the other hand, it is also possible this way to see whether, for example, feedback was received from all parts of the city and not only from inner-city districts.

In fact, there were fully completed questionnaires from all postcode areas with the exception of the airport (60549). There were only single-digit responses from Zeilsheim (65931), Sossenheim (65936),

Nied (65934), Griesheim (65933) and Schwanheim (60529) in the west of the city, and from Fechenheim (60386) and Bergen-Enkheim (60388) furthest to the east of Frankfurt.

These households were invited by the German Car sharing Association by letter to participate in the survey.

In the survey of non-customers, a filter question was asked at the beginning. Persons who stated here that they were already registered with a car sharing provider were not admitted to the survey. An exception was made for Car2Go customers who were redirected to the user survey. Some 211 non-users contacted answered the survey. 204 questionnaires were completed in full by non-users. Additionally 63 questionnaires were completed by Car2Go customers.

City	Survey protocol	Members	Non- members	Total
Frankfurt	CAWI (by CS operator email)	1037	0	1037
	CAWI (by postal address)	63	204	267
Total		1100	204	1304

Members and non-members collected answers are summarised in Table 3 below.

Table 3: Number of completed questionnaires collected in the German case study

Since the aim of this study is to determine more accurately the differences between the users of different car sharing services, a distinction was first made between users who are registered with only one car sharing system and those who are registered with several alternatives. Different combinations of car sharing systems were then distinguished within the group of multiple registered users. If respondents were registered with several providers of the same car sharing variant (for example: stadtmobil and nimbler), they were counted as registered with one alternative. Respondents breakdowns according to the car sharing variant they belong to are reported in Table 4 below.

Of those surveyed in the sample, 68.9% are registered with only one car sharing system. 31.1% of respondents are registered with two or more car sharing systems at the same time. Among the users who are multiply registered, all the combinations considered were of similar size (between 5.9% and 8.5%). Exception: all groups in which users are also registered for the peer-to-peer option account for 1.1% or significantly less.

Combination of subscriptions	Number of respondents	% of all respondents
only roundtrip services	406	36.9%
only combined services	304	27.6%
only free-floating services	41	3.7%
only peer-to-peer services	7	0.6%
Total	758	68.9%
roundtrip + combined services	93	8.5%
roundtrip + free-floating services	65	5.9%
combined + free-floating services	72	6.5%
peer-to-peer + another services	12	1.1%
Total	242	22.0%
roundtrip + combined + free-floating services	80	7.3%
peer-to-peer + two other services	10	0.9%
Total	90	8.2%
all car sharing services	10	0.9%

Table 4: Classification of the respondents in car sharing user groups

A clear distinction must be made between users of the combined car sharing system, which offers station-based and free-floating vehicles from a single source, and users who are registered with several different car sharing alternatives. Although both groups of users combine car sharing systems, our analysis shows that some of them differ significantly from one another. So, from here on out, we will talk about the "combined car sharing" users on the one hand and the "multiple users" or "parallel users" on the other.

For most groups, the number of cases is sufficiently large, however due to the very small number of cases in all groups containing peer-to-peer users, these were no longer considered in the further evaluation. In addition, since the groups "roundtrip + free-floating", "combined + free-floating" and "roundtrip + combined + free-floating" behave very similarly in individual questions. Where this is the case, these three groups were combined into one group "free-floating +"

2.3.3 Belgian case study

During the design phase of the survey, the people living in the city of Brussels were targeted since both roundtrip station-based and free-floating services were active. In order to collect information from car sharing users, the service providers were contacted and informed about the STARS survey. Car sharing operators were not able to spread the questionnaire among their users, since they had

already collected similar information for an internal study. However they were willing to share some of these results. Additional issues came out during the data collection activities in Brussels. Thus, instead of having only information about a specific city, the Belgian case study was enlarged. Three different surveys were integrated, all starting from the same contents mentioned in section 2.2. To ensure both car sharing users and non-users would be sufficiently represented in the case study, different sampling strategies were used to gather data.

1. Panel survey

The target of this survey were people not enrolled in any car sharing service. Thus, the first survey was executed among an online panel of 1000 inhabitants of the Flanders region in Belgium, between September 26th and October 7th 2019. This sample is representative in terms of age, gender, residence and education degree. Most of the non-user questions from the survey mentioned in section 2.2 were included in this Flanders non-user panel study. For example, questions about the intention to become a customer of a car sharing platform, about their mobility behaviour or about the features of car sharing that would entice them to use the service were retained. Due to survey length restrictions, detailed information about their last trip performed in the city was not asked here. For a more detailed look at the questionnaire and its differences compared to the Italian case study, see Appendix 2.

Within the sample of 1000 inhabitants, 15 respondents (1.5%) indicated to be member of a car sharing service in Belgium: nine respondents were members of a roundtrip station-based service (RTSB), one of a free-floating service (FFOA), three of an organisation facilitating car sharing among neighbours, while the last two car sharing users are not linked to an organisation mentioned in the survey, probably doing car sharing on an informal way. For a more detailed explanation of these different forms of car sharing, please refer to (Bergstad et al., 2018; Nehrke et al., 2018; Ramos et al., 2019; Rodenbach, Mathijs, Chicco, Diana, & Nehrke, 2018).

2. Internal surveys of car sharing operators

The other group of interest were car sharing users. Therefore car sharing operators active in Belgium were asked to participate in the STARS research. A couple of them wanted to cooperate, but none of the car sharing organisations was able to spread the full survey (see section 2.1.3), due to the length of the original survey. However some car sharing operators were willing to share data gathered during internal surveys carried out in 2019, on the condition that only comparative analyses could be carried out. Thus, data of more than 3200 respondents from internal researches of both RTSB and FFOA services operating in the Capital Region of Brussels were accessed.

The topics covered by the internal surveys of the car sharing operators were very similar to those of the STARS full survey, for example information about changes in mobility habits and car ownership of car sharing users were available. Clearly, the quantity and quality of information collected depend on the deepening done by the car sharing operator. For instance, no information about the last trip performed in the city was collected and a more detailed and chronological view on the change of car ownership due to the subscription to car sharing was also missing.

However, through these datasets it was possible to compare members of roundtrip station-based and free-floating car sharing operators, which is the main lack in the Italian case study that is presented in the following. As for the above panel survey, for a more detailed look at the questionnaire, see Appendix 2.

3. Full version of the STARS web survey

At last, the full survey as described in section 2.1.3 was also distributed in Dutch within the Flanders region of Belgium. From September 9th till October 20th 2019 Autodelen.net, the network of car sharing in Belgium, circulated a link to the online survey via their own channels (newsletter, social media, network, ...). This inquiry resulted in a sample of 175 respondents, of which 65 car sharing members enrolled in different car sharing operators.

Overall number of observations for the Belgian case study

Information coming from the previous three sources were merged in order to have a wider picture of the car sharing impacts in Belgium. The full breakdown of the collected answers by different surveys is reported in Table 5 below.

Area	Survey protocol	Members	Non- members	Total
Flanders		80	1095	1175
	CAWI (Panel)	15	985	1000
	CAWI (Full version)	65	110	175
Brussels Capital region		3215	0	3215
	CAWI (CS operators survey)	3215	0	3215
Total		3295	1095	4390

Table 5: Number of completed questionnaires collected in the Belgian case study

In addition respondents breakdowns according to the car sharing variant they belong to are reported in Table 6.

Car sharing variants	Brussels Capital region	Flanders region	Total
Roundtrip station-based	2396	52	2448
Roundtrip homezone-based	-	11	11
Free-floating with an operational area	819	15	834
Car sharing among neighbours	-	45	45
Peer-to-peer car sharing	-	9	9
Total	3215	80	3295

Table 6: Respondents per car sharing variant in the Belgian case study

2.4 Method to assess the replicability of the case studies for "uptake" cities

Beyond the above introduced main case studies, an additional activity carried out in WP5 was to establish a small group of "Uptake" cities. The purpose of establishing the Uptake cities group was to check the replicability and understanding of the STARS project results by external local authorities. Since the scope, size and number of the cities needed for the project were not defined in the DoA, the consortium reached an agreement that cities less than 50000 inhabitants will not be included, since that is the minimum number to cover all car sharing business models identified earlier in the project (in WP3). Another desirable characteristic in screening cities for the Uptake cities is that they are from Eastern Europe. According to (Nehrke et al., 2018; Rodenbach et al., 2018) car sharing in Eastern European countries, compared to the rest of the EU, is well underdeveloped. Thus including a high number of Uptake cities from these countries presented additional value for testing the project results and understanding from these city representatives what is needed. The cities recruitment started in January 2019 due to the nature of communication with city representatives mainly in their availability, responsiveness and general interest in joining the STARS project.

After the initial approach made by ICLEI to 10 Eastern European cities with a population greater than 50000 inhabitants, a Letter of Interest was sent to the city representatives, to create a form of commitment towards the project and the obligations that may arise during their involvement. The Letter of Interest was comprised of a section where the city representatives sign to indicate their involvement, which means they promise to do their best in attending designated webinars and workshops. In the second part of the Letter of Interest, the cities had to answer questions that describe their interest and expertise in the topic of car sharing. ICLEI managed to collect four letters of interest by City of Budapest (HU), Cluj-Napoca (RO), Oradea (RO) and Sofia (BG), while only email exchange was conducted with the cities of Warsaw (PL), Varna (BG) and Bratislava (SK) where they have expressed their interest in following the project, mainly webinars and workshops.

The main activities designed for the Uptake cities were two webinars and a 3.5-hours workshop within the Innovation camp held in Paris on the 15th October 2019.

The first webinar, titled "Car sharing outlook in the EU", was attended by 22 participants, out of which 5 Uptake cities: Budapest (HU), Cluj-Napoca (RO), Oradea (RO), Sofia (BG) and Warsaw (PL). During the webinar, Uptake cities had a designated slot to give a short presentation about their cities' mobility outlook and their expertise on car sharing. After the webinar, as mentioned, a short questionnaire was sent to the Uptake cities. Some of the comments were useful for organising the second webinar in selecting topics and speakers.

The second webinar, titled "Bringing car sharing into the European cities" was attended by 20 participants, out of which five uptake cities: Warsaw, Cluj-Napoca, Budapest, Varna and Sofia. Similar to the 1st webinar, the Uptake cities had been given a dedicated timeslot for their introduction and reflection on urban mobility situation in their city, with special focus on car sharing in case it operates there.

The two webinars were followed by a survey that Uptake cities filled in, expressing their thoughts about the webinar and recommendations for the future steps. Both questionnaires are reported in Appendix 3.

Webinars were 90 minutes long organised via online platform GoToWebinar and they were recorded and uploaded on the CIVITAS Learning platform.

Additionally, Uptake cities were asked to write a document of about a couple of pages related to a potential car sharing implementation scenario in their respective cities, with the deadline set for at the end of the year 2019. The aim of this document is to help the consortium to understand how well did the Uptake cities understand the STARS project results and what would be the procedure in case they decide to implement a certain car sharing business model. The cities were provided with a template comprised of five guiding questions. Uptake cities representatives were not obliged to follow the guiding questions and they could choose another form of the document. Moreover, ICLEI stood available and invited the Uptake cities representatives for a one-to-one phone call meeting to assist them in writing the document.

3 Data analysis methods

STARS

3.1 Descriptive statistics, statistical testing and person-level analyses

Person and household level data collected through the survey implemented for the different case studies were firstly analysed by considering descriptive statistics on each question and comparing car sharing users versus non-users. Concerning the Frankfurt and the Belgian case studies were different operational forms of car sharing are in place, observed differences among users of such different services were also noted. Additionally, for the Italian case study a control group was extracted from the non-members sample by implementing a propensity score-based matching, as described in 2.1.2, while we also have an oversample of car sharing users.

We therefore have four different sets of observations in Milan and Turin: a random sample of car sharing users, an additional "oversample" of car sharing users, a random sample of non-users and a control group made of non-users. According to the kind of analysis, it is more sound to jointly analyse two of those groups. More specifically, whenever the use of a control group is useful to evaluate the causality of car sharing membership (e.g. car ownership), differences were evaluated between the group of non-oversampled car sharing members and non-members of the control group only. It is worth stressing that even using this approach it is not possible to fully guarantee to correctly capture the causality effect, because there might be other underlying factors that were not taken into consideration in the control group definition, such as differences in lifestyles, personal norms, values and attitudes.

In other analyses at a rather disaggregate level (e.g. by geographic zone), where more observations were necessary to reduce the sampling error, all car sharing users' observations (both oversampled and not oversampled) and all non-members observations were used. In other cases, all four groups will be shown together (e.g. in the use frequencies reported in Figure 15 and Figure 16) to have a broader view and better interpret the difference among these groups, or to check the effects of the oversampling on the analysed statistics.

When average values were compared, t-tests or non-parametric Wilcoxon signed-rank tests were performed to check for statistical significance (e.g. the average number of cars owned by respondents evaluated in 4.2), whereas Chi-square test was performed to check for significance in frequencies (proportions) differences (e.g. the use frequency of different transport modes in 4.4.1). All the analyses were carried out and plotted with R, which is an open-source software environment for statistical computing and graphics (R Core Team, 2013).

Finally, since the Belgian case study is based on three different data sources, different methods of analysis were applied. For the panel survey, univariate relative frequencies for every variable and cross tabulations (bivariate relative frequency distributions) were evaluated for the most relevant relations between dependent and independent variables. Only significant frequencies² are reported in this document.

The data obtained from internal surveys of car sharing operators were already analysed and presented in tables with univariate relative frequencies for every separate question. For this part of the case study, different research samples' results were just compared.

Some other descriptive statistics and cross tabulations were done with data coming from the full survey. Only the most relevant variables will be presented in the following.

3.2 Modal switch models and trip-level analyses for the mobility scenarios

Data coming from the survey described in chapter 2 are also providing information for a representative set of trips done in the study area. In order to avoid having a too complex survey and given the level of detail that was already requested to correctly observe car ownership changes, this survey did not include questions related to the future mobility scenarios. Therefore, wishing to evaluate the potential of car sharing in attracting the existing travel demand, a previous study carried out in the city of Turin was considered (Ceccato & Diana, 2018). In that research, an extensive travel survey was administered in the city of Turin through both CAWI and CATI protocols, seven days a week in three different 4-weeks periods (September–October 2016, February 2017 and June 2017), to a representative sample of the population living in the Turin metropolitan area. 4466 complete questionnaires were collected but only 3280 (73.4%) were retained, since respondents that did not travel the day before the interview or had only trips longer than 50 km or travelled outside the car sharing operational area of the existing services were not considered.

Along with a complete travel diary and questions about socioeconomic characteristics of the respondents and of their households, one section of such previous survey focused on a randomly selected trip among those listed in the travel diary. Attitudinal questions on this trip and stated-preference (SP) experiments were used to investigate related mode switching attitudes. Since car sharing was one of the alternative modes proposed in the SP experiments, it was possible to evaluate the attributes that influence the switching intentions towards car sharing. In particular, respondents were asked to state their willingness to switch to car sharing from the "base mode", represented the currently used mode, to car sharing under a particular condition obtained as a combination of trip

² Reliability level of 95%.

cost and travel time. These two trip attributes were computed for the new mode by following an experimental design that is based on cost and time functions that are reported in Appendix 5, together with the positive switch results of SP experiments. The reader is referred to (Ceccato & Diana, 2018) for additional details on this survey.

Then, binomial logit models were calibrated using this dataset in order to predict switching intentions from the currently used mode to car sharing. Both socioeconomic characteristics of the respondent, of her household and trip characteristics (distance, duration, generalised cost, purpose) were considered as explanatory variables during the calibration phase. The complete list of these variables is reported in Table 7 below.

Variable	Description	Туре	Level
AGE	Age	Metric	Individual
BASE_COST Current mode trip cost [€]		Metric	Trip
BASE_DIST	Current mode trip distance [m]	Metric	Trip
BASE_DUR	Current mode trip duration [min]	Metric	Trip
BASE_LEG	Current mode trip legs	Metric	Trip
BASE_WAIT	Current mode waiting time [min]	Metric	Trip
BASE_WALK_DIST	Current mode walking distance [m]	Metric	Trip
BASE_WALK_DUR	Current mode walking duration [min]	Metric	Trip
BIKE_SHARING	Bike sharing subscription (Y: yes, N: no)	Categorical	Individual
CARPERLICENCE	Number of cars per driving licences	Metric	Household
CS_COST	Car sharing trip cost [€]	Metric	Trip
CS_DIST	Car sharing trip distance [m]	Metric	Trip
CS_DUR	Car sharing trip duration [min]	Metric	Trip
CS_LEG	Car sharing trip legs	Metric	Trip
CS_WAIT	Car sharing waiting time [min]	Metric	Trip
CS_WALK_DIST	Car sharing walking distance [m]	Metric	Trip
CS_WALK_DUR	Car sharing walking duration [min]	Metric	Trip
EDUCATION	Level of education (NE: no education, PRIM: primary school diploma, SEC: secondary school diploma, HS: high school diploma, UNI: university degree, master or Ph.D.)	Categorical	Individual
EMPLOYEMENT_AG GR	Job status (RET: retired, STN: student, UNE: unemployed, WAH: work at home, WOOH: work out of home)	Categorical	Household
F_BIKE	Bike monthly use frequency	Metric	Individual

F_BS	Bike sharing monthly use frequency	Metric	Individual
F_CAR	CAR Car monthly use frequency		Individual
F_PT	Public transit monthly use frequency	Metric	Individual
GENDER	Gender (M: male, F: female)	Categorical	Individual
HH_CAR	Number of cars	Metric	Household
HH_CHILDREN_U	Number of children (<18 years)	Metric	Household
HH_DRIVLICENCE	Number of driving licences	Metric	Household
HH_SIZE	Number of members	Metric	Household
HH_WORKERS	Number of workers	Metric	Household
INCOME_AVG	Average monthly income [1000€]	Metric	Household
MODE_USED	Current mode used (CAR: private car as a driver/passenger, PT: public transit)	Categorical	Trip
NO_WORK_DAY	Holiday (Y: yes, N: no)	Categorical	Trip
PT_SEASON_TICKET	Public transit pass (Y: yes, N: no)	Categorical	Individual
TRIP_PURP	Trip purpose (HBW: home-based work, HBEd: home-based education, HBO: home-based other, NH: not home-based)	Categorical	Trip
ZTL_TO_AP	Destination within a limited traffic zone (Y: yes, N: no)	Categorical	Trip

Table 7: Candidate explanatory variables

In particular, four different models were estimated by considering the four main travel means reported by the respondents in their travel diary, namely walk, bike, car and public transport. More details about the variables that significantly affect the switch toward car sharing and their coefficients are reported in Appendix 5.

Models calibrated with these data were then applied to the data collected within the STARS Italian case study, which contained all the required information about the respondent and the trip characteristics and that was presented in section 2.2.3. This procedure might raise some spatial transferability issues for the data collected in the city of Milan, since the population of the two cities, their characteristics and travel habits might be different. For this reason and because of the lack of detailed information about the last trip performed, the two case studies in Germany and Belgium were excluded from the estimation of the travel demand that may potentially switch to car sharing. However, for the Italian case study the larger sample collected in (Ceccato & Diana, 2018) was considered more reliable than a calibration based on the data collected through the survey described in 2.1.

The entire population living in the two cities was obtained by weighting the sample observations according to the two representative variables (gender and age). Therefore each weight represented the number of people living in one of the two cities having the same characteristics in terms of gender and age of the respondents.

Then the total amount of daily trips within the two cities was evaluated by simply summing up the observation weights and then multiplying the result times the number of average daily trips per person. According to the information reported by the mobility agency of Milan³, 2.69 trips per person per day were made in that city by people with more than 18 years. On the other hand, the estimated number of daily trips per person (over 18) in Turin was 2.3, according to the report of the Turin metropolitan mobility agency (Agenzia per la Mobilità Metropolitana e Regionale, 2015).

The population-level modal split of Turin and Milan resulting from the survey, presented in Figure 2 below, was compared to existing statistics^{4,5} to check for consistency.

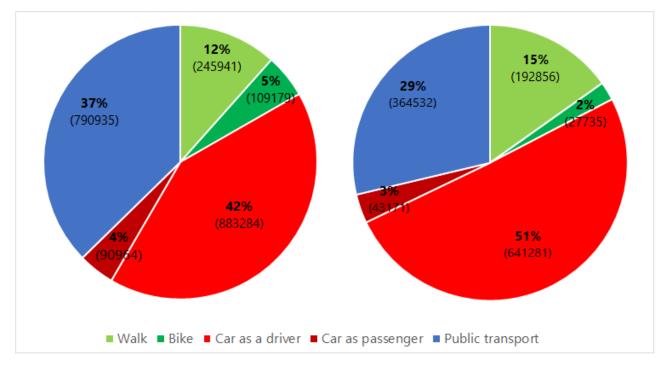


Figure 2: Modal split in Milan (left side) and Turin (right side) estimated from the trips registered in the 2019 STARS survey

³ <u>https://www.amat-mi.it/it/consultazioni/pums/documenti/ddp1/45/</u> - Accessed September 5th, 2019

⁴ <u>https://www.eiseverywhere.com/file_uploads/d23dc9cc58635262e5d20a4e48f4d087_MILANO_LONG.pdf</u>

⁽Berrini (AMAT) The challenge: tranform the Urban Mobility model to make Milano a more Livable city) - Accessed September 5th, 2019

⁵ <u>http://www.epomm.eu/tems/result_city.phtml?city=279&map=1</u> (EPOMM - Turin modal split) - Accessed September 5th, 2019

A good match was found, especially for Turin, even if the STARS survey recorded a larger proportion of walk trips, probably because these trips are traditionally under-reported in official statistics (Agrawal & Schimek, 2007; Westat, 2019). The proportion of trips made by car as a passenger is also quite low, probably due to a trip selection bias of respondents that tended to more easily recall a trip as a driver when asked to report about the last trip they made.

Finally, applying the switching probabilities it was estimated the number of trips that might be potentially substituted using car sharing.

3.3 Definition of the five mobility scenarios

Different mobility scenarios were set up for both Turin and Milan. Some of them derive from the application of the switch models presented in the previous subsection 3.2, whereas others are directly based on the survey data, since they represent either the current situation or an hypothetical situation with no car sharing services operating in the two cities. It is worth stressing that the predicted number of switches in different scenarios does not refer to any specific time point, so understanding "when" such scenarios could take place is beyond the scope of the present research. Additionally, the nature of the switch models used in this study allows to predict changes in the travel demand among existing modes, but not to forecast increasing in the overall travel demand. Therefore the overall travel demand in the two cities is considered constant in all designed scenarios.

Five different scenarios have been defined and evaluated in this research.

3.3.1 Business as usual scenario

The first scenario is called business as usual, since it represents the situation in a short-medium term, where car sharing will evolve according to the action already being planned from car sharing operators without proper policies aimed to maximise its positive impacts. This scenario is based on the outcome of the in-depth survey to car sharing operators that was implemented at the beginning of the project (Chicco, Diana, Rodenbach, Mathijs, & Nehrke, 2018).

Despite business as usual scenario and current scenario are conceptually different according to the previous definition, because the former is the projection in the near future of the latter with steady growth rates, in this study the two scenarios were considered as a unique scenario. This assumption derives from the fact that it is not the focus of the project to anchor the mobility scenarios to a specific time point. More precisely, the BAU scenario is informed by the STARS survey where observed mobility patterns of the sample are expanded to the universe of daily trips (presented in Figure 2 of par. 3.2), with the addition of the number of car sharing daily trips available for the two Italian cities reported in (Ciuffini et al., 2019), since car sharing trips are too few to be reliably observed through a sample survey.

3.3.2 All switch scenario

The second scenario is called "all switch" and it was directly derived from the application of the switch models to the daily trips performed by non-members survey respondents, then expanded to the universe of daily trips of Milan and Turin. Therefore, the scenario estimates the potential number of daily trips that might be performed with car sharing under current conditions. Since discrete choice models sitting behind switch models are based on the random utility theory, the "all switch" scenario is the one where individuals would maximise their systematic utility, perfectly knowing the transport alternatives and their objective costs (Ortúzar & Willumsen, 2011) and in presence of a car sharing offer that can serve all trips in the study area with the same levels of service of private cars (in terms of travel times including walk times to/from the parking spots at origins and destinations) and costs (compared to the actual fare structure).

These latter two conditions are not met in reality. On the one hand, travellers are different from the postulated ideal consumers and they make their choices also based on imperfect knowledge, personal norms and attitudes, habits. On the other, existing car sharing systems cannot provide the pervasiveness of private cars in the whole city to be economically viable. Therefore, we expect to observe a gap between business as usual and all switch scenario, with many more trips assigned to car sharing in the latter one.

3.3.3 Rupture scenario

The "all switch" scenario is providing an upper bound for the market share of car sharing systems, however it is not necessarily leading to a maximisation of its benefits in terms of reduction of the externalities of the transport system in a city. The latter depends on the switching patterns between different modes and car sharing, where a maximisation of diverted trips from private cars and a minimisation of diverted trips from public transport and active means is clearly desirable. The scenario that seeks to maximise such benefits is named rupture scenario.

The rupture scenario is defined as the scenario that maximises the overall car sharing benefits, expressed in terms of greenhouse (CO₂) and pollutants (NMVOC, NOx, NH₃ and PM_{2.5}) reduction. As it will be further clarified in the following subsection 3.4.1, other benefits and especially changes in the spatial and temporal configuration of the demand for parking spaces will be quantified as well for this scenario, but do not concur in its definition since they cannot be easily monetised and jointly considered with the variations in emissions.

Considering the explanatory variables that came out from the switch models calibration (reported in Appendix 5), two of these variables were individuated to run a sensitivity analysis and check how the car sharing demand is affected. The first one is the cost of car sharing, whose increase will reduce

the overall number diverted trips, especially those performed with null-cost modes (at least in terms of out of pocket cost), namely walk and bike. However the increase of car sharing cost will impact also on the number of trips that might be diverted from PT and private car. Although the reduction of switches from PT is desired, the one from private cars is not. In this perspective, the second variable that might help to reach the goal is the private car trip cost, whose increase would obviously cause an increase in the number of diverted trips proportional to the switch model calibration coefficients reported in Table 55: Car to car sharing switching model - significant coefficientsTable 55 of Appendix 5.

Car sharing costs were directly determined from the average operators' tariff of each city. Thus an increase of this cost is simply obtained by multiplying those tariffs by a growth coefficient. The increase of private car trip costs is, on the other hand, a bit more complex, since it was estimated according to the general population perception of costs when using a private car. It is in fact well known that behavioural choices are linked for private modes to perceived rather than real costs. Following standard practice in transport planning a generalised cost, which represents the sum of the fuel cost, of the parking (if any), of toll (if any) and of the pass to enter in limited traffic areas (if any), was used.

Among these four generalised cost components, only changes in parking costs were considered as potentially changing. Many reasons were at the base of this assumption: firstly, the fuel price is not dependent on city administration policies, and will directly impact car sharing operators' costs too. Secondly, since the considered trips were mainly carried out inside the two cities, no impact of an increase in the toll was expected. Finally, limited traffic zones (LTZ) in the two cities are different: in Turin this area is not accessible in certain hours of the day, except for public transport lines and people living inside that area⁶. Other people are not allowed to enter. In Milan, there are two different areas: the area B that is a central city area working with similar traffic limitations as the LTZ of Turin, and the area C, which is more similar to a pollution charge zone, in which more pollutant vehicles have to pay to access it. The city administration regulates the change of the price of this pass, thus it can be ideally evaluated in this study; however it was not considered since the two cities are not directly comparable regarding this regulation.

In order to evaluate the potential effects of an increase of both car sharing and parking costs on diverted trips to car sharing from different modes, the two costs were both varied in a range from 0% (all switch scenario) up to 100% of increase with 5% increasing steps.

⁶ <u>http://www.gtt.to.it/cms/ztl/permessi-di-circolazione-ztl</u> - Accessed December 4th, 2019

The rationale of such variations is the following. Although the considered modelling framework assumes a fully compensatory choice protocol, thereby assuming that any variation in the costs of the alternatives has an impact on the probability that the individual is making a choice, it advisable to limit the range of cost variations when defining realistic policy scenarios rather than simply doing marketing research. On the one hand, there is a threshold below which changes are not perceived and therefore no behavioural changes are observed, leading to a well-known habit or behavioural inertia phenomenon. On the other, too sharp increases of parking costs might be considered unrealistic by respondents, and in any case they would not be implemented by the relevant stakeholders. Given the fact that a hourly parking fare consists in a relatively small amount of money in absolute terms, previous research (Tsamboulas, 2001) has shown that an increase of up to 50% had little effect in changing behaviours, while the effect became substantial for increases of around 100%. Therefore we retain the latter as an upper bound, considering that policy-makers are probably not willing to increase costs even more than that but only to a (much) smaller amount. To sum up, and we simulate the effect of increasing parking fares from 0% to 100% to study what would happen in a realistic policy scenario, however anticipating that cost changes of less than 50% would probably produce no effect independently on the modelling results.

As a result, a 21x21 matrix of candidate rupture scenarios was created. Travelled distances, the quantity of each pollutant mentioned above, greenhouse gas and respective costs were assessed for each scenario, following the methodology reported in subsection 3.4.1. Then, to identify the maximum impact (or rupture) scenario, a cost evaluation of the related externalities was carried out by considering the coefficients reported in Table 10 of par. 3.4.2 (see subsection 3.4.2 for the methodological steps). In particular, the monetary costs of greenhouse and pollutants emissions for the society were summed up. The rupture scenario was then identified within the matrix as the scenario that minimises the cost for the society; the minimisation of the costs guarantees the maximisation of the gap between the BAU and the rupture scenario indeed. Furthermore, impacts on congestion and on the use of public spaces have been evaluated for the rupture scenario.

3.3.4 All electric scenario

A fourth "all electric" scenario is derived from the rupture scenario presented in the previous section, by using a fully electrified fleets instead of the current car sharing fleets composition. Travel demand invariance is assumed, which seems reasonable since electric vehicles performances are comparable to internal combustion engine ones in a free-floating scheme in urban areas, where trip lengths and rental durations are limited. This assumption might clearly not hold for roundtrip services, where the limited autonomy of electric cars might be an issue making EV fleets less attractive for car sharing customers. Actually, a recent study found that after experiencing car sharing, members would switch

to car sharing with electric vehicles if possible (Schlüter & Weyer, 2019). As a result, electric vehicles would not produce tailpipe exhaust emissions, therefore the increasing use of car sharing deriving by the switch from any other mode would never correspond to an increase in the emissions. On one hand, the real application of this scenario would probably require an improved, wider and denser network of charging stations. On the other hand, it requires substantial investments from operators' side to substitute the entire fleets. However the local reduction of air pollutions' emissions of this scenario gives an idea to the policy-maker about how big car sharing benefits might be in case of full electrification.

3.3.5 No car sharing scenario

In previous scenarios, only potential trips switching from different travel means toward car sharing were considered. However, to have a more comprehensive view of the car sharing phenomenon, it is worth mentioning that also the opposite switch from car sharing to other travel modes may take place. In fact, decision-makers should also consider what would be the consequence of a service suspension or even shut-down. Therefore, a "no car sharing" scenario was evaluated to understand how current car sharing users will change their travel choices in case of the absence of car sharing and to assess the overall impact of car sharing, rather than the incremental impact compared to the actual situation. Consistently with previous scenarios, an overall travel demand invariance is assumed.

Instead of using switching models to estimate switches of all trips from car sharing to other modes, responses to some attitudinal questions were exploited to define such scenario. Respondents enrolled in a car sharing service were in fact asked to indicate what they would have done if car sharing had not been available for the specific trip, by using a 5-points Likert scale (1 strongly disagree – 5 strongly agree). Descriptive statistics related to such answers will be then analysed to define the "no car sharing" scenario.

3.4 Evaluation of the mobility scenarios

The evaluation of the above defined scenarios was based on a partial application of standard methods for the evaluation of externalities in the transport sector (European Commission, 2019), considering data availability and the specific framework of the present research. In particular, emissions of pollutants and greenhouse gases were quantified and monetised through unit costs, and the optimal "rupture scenario" was based only on these externalities This is due because the other considered impacts, namely on public spaces and on congestion, are either not easily monetisable or not quantifiable in such scenario. Therefore, the impact on public spaces was directly assessed in the final rupture scenario.

3.4.1 Estimation of greenhouse gas and pollutants emissions in the different scenarios

The trip origin and destination information collected within the last trip section of the Italian case study survey was elaborated through the Google Directions API, which enriched the dataset information with additional information such as trip duration, trip distance, number of trip legs (if any), waiting time and on-vehicle time (for transit trips). Trip distances thus elaborated were used to estimate the exhaust emissions of both greenhouse gas (carbon dioxide or CO₂) and some pollutants according to different mobility scenarios, by simply multiplying such distances times the exhaust emission coefficients in grams per kilometres [g/km] which are available in the literature according to different vehicles characteristics. In this research, we only consider tailpipe emissions of both CO₂ and pollutants, without considering e.g. the well-to-tank emissions related to conventionally fuelled vehicles or the emissions due to electricity production related to electric vehicles.

The pollutants that were considered in this study are those typically used in the estimation of the external costs of transport, which are reported in (European Commission, 2019), namely non-methane volatile organic compounds (NMVOC), particulate matter under 2.5 micrometres (PM_{2.5}), nitrogen oxides (NOx) and ammonia (NH₃).

Exhaust emission coefficients of CO₂ and pollutants were calculated by considering the fleet composition of both car sharing and private fleets in terms of number of electric and conventional cars (typically petrol ones), and computing the average of the emissions of different car models composing the fleet. Such averages are weighted by the number of private cars belonging to each emission class, whereas simple averages are considered for shared vehicles since the consistency of each model in the fleet of each operator is not known.

Pollutants exhaust emissions coefficients for conventionally fuelled cars that are considered here are the limit values defined by the European Environment Agency (EEA) (Ntziachristos et al., 2018), while electric vehicles obviously have no tailpipe emissions.

Through such method, average exhaust emission coefficients were estimated for both car sharing and private car fleets in the cities of Milan and Turin.

Car sharing fleets exhaust emission coefficients used in this study are summarised in below Table 8. Please refer to Table 62 in Appendix 9 for more information about European emission standards and CO₂ emissions considered in the car sharing fleet coefficients estimation.

City	Average CO ₂ exhaust emission [g/km]	Average CO exhaust emission [g/km]	Average NMVOC exhaust emission [g/km]	Average NO _x exhaust emission [g/km]	Average NH ₃ exhaust emission [g/km]	Average PM _{2.5} exhaust emission [g/km]
Milan	87.7	0.487	0.043	0.074	0.027	0.005
Turin	87.9	0.474	0.041	0.072	0.0264	0.005

Table 8: Car sharing average exhaust emissions in Milan and Turin

Concerning private cars, firstly the car fleet composition of the two cities in 2018 was obtained from the annual statistics produced by the *Automobile Club d'Italia* (ACI)⁷. Thanks to this information, it was possible to have a segmentation of the car fleet in terms of EURO emission standards, type of fuel and year of first registration. A full breakdown of the car fleet segmentation in Milan and Turin is reported in Table 65 in Appendix 9.

Secondly, as already done for car sharing cars, European emission factors for passenger cars (Ntziachristos et al., 2018) were considered to determine the exhaust emission reference values for some pollutants (CO, NMVOC, NO_x, NH₃ and PM_{2.5}), which will be considered as the real emissions in our scenario. Indeed, it might be argued that emissions in real traffic conditions are different from such values that are obtained through standard driving cycles. However it is important to note that in our framework what matters are the differences between scenarios, and the same approximation is consistently done in all these.

Finally, since there is not a direct link between EURO categories and CO₂ limit values, the CO₂ exhaust emission coefficients for private cars were evaluated considering the year of registration of the cars (ACI⁸) and the average value of CO₂ of the vehicles produced in Europe in that year according to the information reported in "Monitoring of CO₂ emissions from passenger cars – Regulation 443/2009⁹" provided by EEA, while for passenger cars registered before the year 2000 information reported in the document "Implementing the Community Strategy to Reduce CO₂ Emissions from Cars: Fifth annual Communication on the effectiveness of the strategy¹⁰" was considered. Please refer to Appendix 9 for more information about European emission standards and CO₂ emissions considered in the city car fleet estimation.

Private car fleet exhaust emission coefficients used in this study are reported in Table 9 below.

⁷ <u>http://www.opv.aci.it/WEBDMCircolante/</u> - Accessed November 29th, 2019

⁸ <u>http://www.opv.aci.it/WEBDMCircolante/</u> - Accessed November 29th, 2019

 ⁹ <u>https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-16</u> - Accessed November 29th, 2019
 ¹⁰ <u>https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2005:0269:FIN:en:PDF</u> - Accessed November 29th, 2019

City	Average CO ₂ exhaust emission [g/km]	Average CO exhaust emission [g/km]	Average NMVOC exhaust emission [g/km]	Average NO _x exhaust emission [g/km]	Average NH ₃ exhaust emission [g/km]	Average PM _{2.5} exhaust emission [g/km]
Milan	149.9	1.856	0.217	0.478	0.019	0.009
Turin	146.9	1.543	0.177	0.437	0.020	0.010

Table 9: Car fleet average exhaust emissions in Milan and Turin

Concerning other modes of transport used in the last trip recorded within the survey, CO₂ and pollutants emissions produced in trips performed by bicycle or on foot were assumed negligible. In addition, emissions deriving from trips performed with public transport services were considered constant in all scenarios, therefore assuming the public transport offer fixed. Thus, the contribution of these modes in the CO₂ and pollutants balance when changing the number of passengers is null.

3.4.2 Economic evaluation of air pollutions and greenhouse gas externalities

The application of the coefficients determined in the previous section to the distance travelled in different scenarios by shared cars and private cars allowed the CO₂ and air pollutants quantification (tons or kilograms) in the two cities of the Italian case study. However the impact of tons of CO₂ cannot directly be compared (or even summed up) with tons of other pollutants since the effects they have on the human health and on the environment are significantly different. In order to correctly evaluate the impact of each pollutant to the overall balance and therefore understand which scenario may lead to the maximisation of the benefits for the society, all the emissions quantified were converted in monetary terms, following the cost benefits analysis workflow. Therefore, a cost evaluation of the externalities due to emissions in all scenarios was carried out by considering the cost coefficients (European Commission, 2019) reported in Table 10 below.

CO ₂	NMVOC	NO _x transport city	NH₃	PM _{2.5} transport city
€/ton	€/kg	€/kg	€/kg	€/kg
100.0	1.1	25.4	21.6	132.0

Table 10: Average Italian air pollution costs in 2016 (source: European Commission, 2019)

The estimated cost for the society in each evaluated scenario is obtained by multiplying the amount of CO₂ and pollutants emissions by the respective cost coefficient and finally summing up all the costs.

3.4.3 Estimation of the impacts on the use of public space due to modal diversion

In order to estimate the impact of car sharing modal diversion on public spaces, the results of the switch models, combined with the reported parking habits and trip characteristics of respondents (as stated in Q41 and Q42 of the questionnaire), were used to quantify how many "parking events" can be saved after the switch from private car towards car sharing in the Italian case study. Please note that the effects on public spaces related to a reduced number of private vehicles are not considered here, since it can be directly expressed by the private car ownership variation due to car sharing that is examined elsewhere (sections 2.2.3 and 4.2). Here we are rather concerned by trip-level impacts on parking spaces in the mobility scenarios, that might happen even if car ownership levels are unchanged, due to a different spatial configuration of the demand for parking spaces.

Therefore, quantitative results will be provided in terms of number of saved parking events (both onstreet parking and on-surface dedicated parking), which are defined as a parking space that is not any more occupied by a vehicle since the related trip was switched to car sharing. The number of parking events is a conceptual measurement unit that is not equivalent to the number of parking spaces (one parking space can host several events since the latter are defined on a temporal basis), but this quantification is a useful input to a GIS-based analysis to make decision-makers aware of the reduced parking pressure in a city, especially near mobility attractors. In addition, this kind of unit measure can be evaluated only by comparing two different scenarios, because the consideration of just one scenario would only lead to a positive number of consumed parking events. On the other hand, the current parking habits of respondents that might switch towards car sharing instead of using a private car (as stated in Q41 and Q42 of the questionnaire) might individuate combinations that positively impact on public spaces, even if on a temporary basis. Thus, the analysis of daily parking events was carried out once the rupture scenario has been defined on the basis of the maximisation of benefits in terms of emissions. This is mainly due to the fact that is quite difficult to monetise changes on parking events, which could be added to the previous monetary external costs and benefits of car sharing for the society.

Switch from other modes to car sharing, namely walk, bike and public transport, were not considered in this analysis since private cars parking habits for those specific trips would have not been affected anyway.

Not only positive effects are expected: in some cases, the diversion to car sharing for a specific trip might result in an increase of the private car parking time in the area where the trip is originated. Thus, the parking location at both origin and destination of the trip is an important aspect that needs

to be considered. Table 11 below summarises how switching a trip to car sharing impacts in terms of parking events according to the kind of parking area at both the origin and the destination.

Parking at the trip origin	Parking at the trip destination	Impact on parking at the origin	Impact on parking at the destination
Garage	Street	Neutral	Positive
Garage	Dedicated on-surface parking area	Neutral	Positive
Garage	Garage	Neutral	Neutral
Dedicated on-surface parking area	Street	Negative	Positive
Dedicated on-surface parking area	Dedicated on-surface parking area	Negative	Positive
Dedicated on-surface parking area	Garage	Negative	Neutral
Street	Street	Negative	Positive
Street	Dedicated on-surface parking area	Negative	Positive
Street	Garage	Negative	Neutral

Table 11: Impacts on parking events according to parking areas characteristics

In particular, the car sharing impact is considered positive at destination when the origin parking is a garage (private or owned by the work company) and the destination is a roadside or a dedicated parking area. Indeed in these cases, if the shift occurs, the private car would remain parked in a garage at the origin (neutral impact on public space) while the shared car would be parked for less time at destination (Millard-Ball, Murray, ter Schure, Fox, & Burkhardt, 2005). For the same reason, car sharing impact is considered neutral when the destination is a private garage independently from the origin car parking location, even if car sharing vehicle would not be parked in a private garage but on public space. On the contrary, the impact of the diverted trip is considered negative, if the car is parked on the roadside at the origin, because it would keep on occupying public space.

Clearly the above evaluation criteria are an approximation, since the complete trip chain should be considered rather than focusing on a trip-level analysis as done here. However trip-level rather than trip chain-level analyses are the state of the art in transport modelling, despite well-known limitations for example concerning the study of modal choices.

Once determined the effects of car sharing on public spaces at the origin and destination of each recorded trip, the results were expanded to the universe of trips, therefore assuming that groups of individuals having the same characteristics of the respondents in terms of gender and age have also

the same parking habits. Then positive, negative and neutral impacts were aggregated in each of the two cities according to some zoning and to the kind of parking place where the parking events happened, thus obtaining three values for each zone representing the impacts on street, parking or garage, respectively. The zoning used for the city of Milan divides the city in its nine neighbourhoods (Municipi) according to the map available on the geoportal of the city administration¹¹. The zoning of Turin was chosen in order to have a comparable level of detail. The zoning divides the city in nine areas (Circoscrizioni) according to the open data maps available on the geoportal of the city administration¹².

Finally, the open-source software QGIS (QGIS Development Team, 2019) was used to generate spatial representations of the results.

3.4.4 Impacts on travel times and congestion

Data collected through the survey and used in the trip level analysis carried out in this study are not sufficient to run a formal traffic simulation model. Therefore a quantitative measurement of car sharing impacts on congestion simply due to patterns of modal diversion at the individual trip level is not feasible, and it would in any case be negligible given the relatively low number of diverted trips compared to the overall traffic flows at least in uncongested streets, given the nature of the speed-flow relationship. On a logical viewpoint, the impact cannot in any case be positive, since substituting private car trips with shared car trips has a neutral effect, while the effect of substituting any other travel means is negative. Indeed, please consider again that we are only focusing on the trip-level analysis, rather than considering the more indirect impacts on traffic due to the reduction of car ownership levels in the city.

¹¹ <u>https://geoportale.comune.milano.it/sit/open-data/</u> - Accessed January 13th, 2020

¹² <u>http://geoportale.comune.torino.it/web/cartografia/cartografia-scarico</u> - Accessed January 13th, 2020

4 Person-level analysis: differences between users and non-users and among car sharing forms

4.1 Sociodemographic characterisation of respondents

The main socioeconomic characteristics of car sharing users and non-users who answered to the STARS travel survey will be presented in this introductory section. Some aspects here introduced will be analysed more in detail in later sections of chapter 4.

4.1.1 Car sharing members and non-members of the Italian case study

As already presented in par. 2.3.1 respondents interviewed within the Italian case study are citizens of the city of Milan or Turin. Concerning the individual characteristics, in both cities the majority of respondents not enrolled in a car sharing service is female, in line with the gender distribution of the general population¹³. Not surprisingly, the majority of respondents having a car sharing membership is male (Le Vine, Zolfaghari, & Polak, 2014). Most of car sharing members interviewed have an age between 25 and 34 years in Turin, slightly younger compared to the members of the city of Milan (mostly ranging between 35 and 44 years). Anyway, car sharing members are younger compared to non-members and have a high level of education (in both cities over 50% has a degree), as reported in available studies from Italy (Ciuffini et al., 2018, 2019) and other countries (Becker, Ciari, & Axhausen, 2017; Clewlow, 2016; E. Martin & Shaheen, 2011; E. Martin et al., 2010; Mishra et al., 2015).

The majority of car sharers owns a public transport season ticket (69.7% in Milan and 61.3% in Turin), which is far higher compared to non-members (47.4% and 38% respectively). In this case, the city Turin has a lower percentage of respondents owning a PT season ticket compared to Milan. Considering the registration time to a car sharing service, most of users interviewed in Milan subscribed the service 2 to 3 years before the survey time, while the figure lowers to 1 up to 2 years in Turin; indeed, currently car sharing operators, kicked off in 2013 in Milan and in 2015 in Turin. In addition, car sharing members seem more willing to share transport means than non-members: 53% of car sharers also has a subscription to a bike sharing service while only 10% of non-members is using bike sharing in Milan; in Turin these percentages are 45.3% and 8.6% respectively. Further information about season ticket ownership and bike sharing membership will be analysed in 4.3.

In the sample of the city of Milan the majority of households has two members with two licensed drivers and owns one car in both CS members and non-members groups; however car sharing members own fewer cars on average, since a higher presence of car free households (10.9%) and a lower proportion of two and three-cars households was registered in this group. The results coming

¹³ <u>http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1</u> – Accessed October 8th, 2019

from the samples of the city of Turin are comparable to those reported for the city of Milan, except for the car-free households proportion. The percentage of households that do not own a car is similar between CS members and non-members of Turin (9.9% and 8.2% respectively). These groups differences will be analysed more in detail in section 4.2.

The household income distribution is quite dispersed in both members and non-members groups but more shifted to higher values in the former; consequently, car sharing members live in households with a higher average income compared to non-members, in line with findings coming from others studies (Clewlow, 2016; Efthymiou & Antoniou, 2016). Lastly, strong differences between car sharing members and non-members households were found in the number of car sharing memberships in both cities. The 40% of CS members in Milan (37% in Turin) stated that another person of the household has a car sharing subscription; these percentages fall to 11.6% and 9.8% in non-members households of Milan and Turin respectively, confirming the importance of subjective norms in the attitudes towards car sharing (Bergstad et al., 2018).

For other descriptive statistics about these groups from the Italian case study, please refer to the tables reported in Appendix 6.

4.1.2 Frankfurt car sharing users

Differently from the Italian case study, the comparison of sociodemographic characterisation has been carried out not only considering the two groups, namely users and non-users, but also differentiating by user group of different kinds of car sharing services that are offered in Frankfurt.

Most car sharing users are between the ages of 30 and 65. As shown in the previous Frankfurt study (Bergstad et al., 2018), car sharing is by no means, as is often assumed, primarily aimed at young target groups.

In the group that only uses free-floating, the proportion of 50-65 year-olds is by far the largest among the comparison groups. This does not correspond to the age structure of this group in other researches, including the above presented Italian case study, and also in the previous study (Bergstad et al., 2018). It is probably due to the nature of the invitation to the survey. In contrast to all other groups, this group of customers was invited exclusively by post. This obviously had a strong influence on the target group section. This also ties in well with the fact that a very high proportion of non-users are between 50 and 65 years old (65 %).

A comparison of the other user groups shows that higher proportions of younger people (age groups 18-29 and 30-49) are found in the groups that use several car sharing systems at the same time ("roundtrip + free-floating" and "combined + free-floating"), while the proportion of older people (65 and older) is higher/ highest in the "roundtrip only" and "combined only" groups.

Similarly to what was found in Milan and Turin, the proportion of men among car sharing users lies well above the proportion within the total population in Frankfurt. 60.6% of the users is male, while males represent the 49.6% of the Frankfurt population. However, there are some significant differences between the user groups. While in the "only roundtrip" group the proportion of car sharing users is still comparable with the figure for the Frankfurt population, in the "only free-floating" group three out of four users are men (75.6%).

In the user groups that use free-floating car sharing and that use several car sharing alternatives at the same time, the male excess is particularly high in the comparison of the groups.

Concerning the household size, interviewed users (as well as non-users) live in a household composed by 2.2 persons on average. Thus, in a car sharing household there are living more people than on average in the city of Frankfurt (1.8).¹⁴ The household sizes do not vary significantly between the individual user groups.

Measured against the total number of households surveyed, the proportion of one-person households is 28.2%. This value differs significantly from the average value for one-person households in the city of Frankfurt am Main (53.7%).

Minor children live in 28.6% of the households surveyed that use car sharing. The differences among the surveyed user groups range from 25.1% ("combined only") to 32.5% ("roundtrip + combined + free-floating"). There is no clear trend between the proportion of family households and the type of car sharing use. Here there are clear differences with the first study of the bcs within the framework the STARS project (Bergstad et al., 2018).

As already mentioned in the Italian case study, car sharing customers have a higher-than-average academic background. Beyond the previously mentioned references, a whole series of German studies have already come to this conclusion (Belter et al., 2015; Follmer, Gruschwitz, & Hölscher, 2015; Loose, 2016; Probst, Utzmann, & Kipp, 2015; Riegler et al., 2016). In the present survey, 71.2% of surveyed users hold a graduate or university degree or are pursuing one. Another 18.3% do not have an academic degree but have a general higher education entrance qualification. By contrast, only 8% of those surveyed have a general certificate of secondary education, and only 1.4% have a certificate of basic secondary education. By comparison: In the city of Frankfurt, the number of people with a certificate of basic secondary education was 22% in 2011, whereas only 39% of the total population (aged 15 and over!) had a general university entrance qualification.¹⁵

https://ergebnisse.zensus2011.de/#StaticContent:06412000000,BEG_4_4_6,m,table

¹⁴Data status: City of Frankfurt am Main 2017

¹⁵Data for Frankfurt am Main from data "Census 2011"

It is noteworthy that the proportion of respondents with an academic educational background in groups using several car sharing systems at the same time is even higher than among users of only one system.

Regarding the employment condition of the Frankfurt respondents, a large majority of car sharing users (87.7%) are gainfully employed. 74.0% of car sharing users state that they are in an employment relationship (non-users also 74%). The proportion of self-employed is 13.7%. Only 3.3% of respondents are in training, the majority of whom are university graduates. 9.1% of respondents 74.0% say that they are currently neither employed nor in training.

While in earlier studies (Hülsmann et al., 2018; Nehrke & Loose, 2018) the proportion of students among car sharing users was overrepresented in comparison with the total population, this study demonstrates the opposite. According to the Statistical Yearbook of the City of Frankfurt am Main 2018, more than 66000 students were enrolled in the study area; this would constitute about 8.9% of all residents in relation to the population (assumption place of study=place of residence). The proportion of users who are undergoing a university education, however, is only 2.5% in the survey.

The monthly net household income available to car sharing users is above average. 39.6% of all car sharing users surveyed have 3001 euros or more net income at their disposal (66.6%), another 27% have more than 5000 euros. Only 12.3 % of all respondents have less than 2000 euros at their disposal. On average, the net household income of employees in Germany in 2017 was 3,224 euros.¹⁶ Car sharing seems (to date) to be less popular among people with lower household incomes.

When comparing the individual alternatives, with free-floating car sharing the high number of households with an income of over 5000 euros (66.7%) stands out. In the previous study, too, there was an upward trend in the household income of this group. The very high net income in this study is very unusual and once again indicates that the group recruited here is unlikely to be representative of the target group of free-floating customers.

Finally, looking at the registration time to a car sharing service, most of the users surveyed have only in the past 10 years registered with one or more car sharing services (73.6%). The proportion of customers who have been using car sharing vehicles for more than 20 years lies at 4.5%.

To sum up, Frankfurt car sharing users are employed, mostly in dependent employment relationships. They generally have an academic background and earn above-average wages. They live mainly in households with 2 or more persons. The proportion of households with children lies between 25% and 32%.

¹⁶ <u>https://de.statista.com/statistik/daten/studie/5742/umfrage/nettoeinkommen-und-verfuegbares-nettoeinkommen/</u> - Accessed January 20th, 2020

The results obtained confirm the excess of men in car sharing found in several other studies. The gender ratio is balanced only among users of exclusively station-based services (Giesel & Nobis, 2016; Hülsmann et al., 2018). The balance in the proportion of men and women found in the first STARS study could be related to the concentration on a certain urban area, since the data otherwise available from other studies, as well as from this study, always refer to entire cities.

4.2 Differences and trends in car ownership

4.2.1 Cross sectional perspective: car ownership levels of users and nonusers

Earlier STARS research (Bergstad et al., 2018) already showed differences in car ownership between car sharing users and non-users. New insights have been gained through the analysis of the differences in car ownership evaluated for each case study presented in par. 2.3 of this report. in particular, differences in car ownership within the Italian case study were evaluated by comparing the not oversampled car sharing members group (free-floating only) with the control group (as defined in section 2.1.2). Since the latter is composed of non-members having the same profile of car sharing members (in terms of gender distribution, age, household dimension, number of children, number of licensed driver within the household and income), differences in car ownership with the not oversampled members sample are more likely to be in relation with the car sharing subscription only. As already explained, the use of this approach does not guarantee the exploitation of the causality effect of car sharing membership; there might be others underlying factors that were not taken into consideration, above all differences in lifestyles, personal norms, values and attitudes concerning the fact of owning a car.

On the contrary, in the Frankfurt and in the Belgian case study respondents enrolled to different car sharing variants were separately analysed; therefore different user groups, which are composed of respondents registered for the same car sharing variant, were compared with non-users.

Italy

Starting with the Italian case study, information about car ownership within car sharing members and the control group of the city of Milan is summarised in Table 12. The table reports also CS members' information about the number of cars at disposal/owned within the respondent's household at the time of the STARS survey (2019), at the time of the first registration to a car sharing service and one year before. Non-members information is related to the number of cars owned at the time of the survey and the number of cars owned in 2013 (starting year of operations of the first car sharing organisation among the current existing services). This year was selected in order to have a

comparable time frame to carry out the analysis of changes in car ownership between members and non-members that will be presented in 0.

In the first six rows of the table, the number of respondents of each group (172) is divided according to the number of cars owned (from zero to more than three¹⁷). Then the total number of cars, calculated by multiply the number of observations of each category by the correspondent number of cars, is reported. Finally, the average number of household cars was evaluated together with the car stocks (cars/1000 people) and are reported in the last two rows.

	Car sharing r	nembers not o	oversampled	Contro	l group
	# of HH cars in May 2019	# of HH cars at registration	# of HH cars 1 year before registration	# of HH cars in May 2019	# of HH cars in 2013
Household cars					
0	19	28	26	8	12
1	102	91	96	95	94
2	47	44	43	58	57
3	2	7	5	9	8
More than 3	2	2	2	2	1
Respondents	172	172	172	172	172
Total n. of cars	210	208	205	246	236
Cars/HH	1.22	1.21	1.19	1.43	1.37
Cars/1000 people	473	468	462	564	541

Table 12: Differences in car ownership between car sharing members and non-members in Milan

The number of cars owned by car sharing members on average (1.22) is lower compared to nonmembers (1.43) and this difference is statistically significant¹⁸.

It is finally worth mentioning that car ownership levels of the entire population of Milan (507 cars/1000 inhabitants in 2018¹⁹) are lower than those of the control group. It is therefore confirmed the importance of considering a control group rather than a general population to correctly assess the impacts of car sharing.

Similar information is presented for the city of Turin in Table 13 below.

¹⁷ In the evaluation of average value, more than 3 was considered as 4

¹⁸ Wilkoxon signed rank test, W=16970, p-value<0.01

¹⁹ <u>http://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche/annuario-statistico.html</u> - Accessed October 8th, 2019

	Car sharing I	nembers not	oversampled	Contro	l group
	A – Number of HH cars in May 2019	B – Number of HH cars at registration	C - Number of HH cars 1 year before registration	# of HH cars in May 2019	# of HH cars in 2015
Household cars					
0	7	10	9	5	9
1	43	39	39	39	37
2	18	20	21	23	20
3	2	1	2	4	5
More than 3	2	2	1	1	1
Respondents	72	72	72	72	72
Total n. of cars	93	90	91	101	96
Cars/HH	1.29	1.25	1.26	1.40	1.33
Cars/1000 people	489	474	479	577	549

Table 13: Differences in car ownership between car sharing members and non-members in Turin

In this case the period under analysis for non-members starts from 2015, since two of the three car sharing organisations currently operating in Turin started in that year. Once again, the number of cars owned by car sharing members on average (1.29) is lower compared to non-members (1.40), however this difference is not statistically significant²⁰.

Contrarily to what was observed in Milan, the control group car stock is lower compared to the one of the whole Turin population (653 cars/1000 inhabitants in 2018²¹). Car ownership levels of both users and not users are much higher in Turin than in Milan, and the latter are in turn higher than those of other EU cities of comparable size.

Differences in the average number of household cars between the all members (both oversampled and not) and non-members were also evaluated, but are not reported here for the sake of brevity. However, in all comparisons carried out within this study, car sharing members' households have always less car than non-members' households, on average. Please refer to Appendix 7 for more information about statistical test results.

²⁰ Wilkoxon signed rank test W=2802, p-value>0.05

²¹ <u>http://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche/annuario-statistico.html</u> - Accessed October 8th, 2019

Belgium

Concerning the Belgian case study, data from the panel survey with almost 1000 car sharing nonmembers in the Flanders region and results from the full online survey among both members and non-members of car sharing in Flanders were firstly compared.

The results of both Belgian surveys are quite similar regarding car sharing non-members. Non-users from the panel survey own on average 1.5 cars at the whole household level, while non-user respondents from the online survey own on average 1.3 cars. For both surveys, almost one-tenth of the respondents do not own a car, almost half has one car and approximately a third possesses two cars. Among the respondents of the full online survey using car sharing, the average number of cars within the household is 0.44. Also the distribution of cars among the respondents is strikingly different than among the group of non-users. Almost two thirds have no private car available, three-tenths has one car and eight percent owns two cars. The general trend, car sharing users own fewer cars than non-users, is definitely confirmed by the Belgian data. At this point, it is important to recall that the majority of interviewees used roundtrip services in the Belgian case study, whereas virtually all car sharing users subscribed to free-floating services in the Italian case study. This is mainly explaining the different results in the two countries.

	Panel survey [Flanders region]	Full online survey [Flanders region]	
Household cars	Non-car sharing users [N=985]	Car sharing users [N=52]	Non-car sharing users [N=83]
0	7.2%	63.5%	10.8%
1	47.3%	28.8%	54.2%
2	37.0%	7.7%	32.5%
3	6.1%	0.0%	1.2%
4	1.6%	0.0%	0.0%
5	0.6%	0.0%	0.0%
5 or more	0.2%	0.0%	1.2%
Cars/HH	1.50 ²²	0.44	1.30 ²³
Cars/1000 people	596	176	543

Table 14: Current number of cars in household (including company cars) – panel survey and full online survey

²² For the calculation of the average number of cars, '5 or more' was coded as '6'.

²³ For the calculation of the average number of cars, '5 or more' was coded as '6'.

To further clarify this point and to avoid exclusively comparing different car sharing forms in different countries, where local conditions might affect the outcomes, differences among members of different types of car sharing were investigated within the Belgian case study.

The comparison of the results from internal surveys shows that car ownership among users of freefloating car sharing schemes is more than five times higher than among users of roundtrip stationbased operators. Within the latter group more than eight out of ten has no own car, 14% has one car and only 1.6% owns two cars or more. One-third of the free-floating car sharing users owns no private car, four out of ten have one car available, and almost a fourth owns two or more cars. Strikingly, the average number of cars within the Brussels households is 0.6, which is less than among free-floating users. This finding suggests that users of free-floating car sharing do not necessarily see the service as a replacement for their own car, but rather as a supplement.

Moreover, it is worth mentioning that these data are gathered in the Brussels Capital Region: the characteristics of the city make it hard to compare them with the results from the first two surveys, which gathered data within the Flanders region. This also explains the lower number of cars among station-based car sharers in Brussels than among car sharers from the full online survey (0.19 versus 0.44).

Inte	Survey among households of Brussels Capital Region ²⁴		
Household cars	Roundtrip station-based [N=2035]	Household budget research [N=1880]	
0	84.0%	33.6%	45.0%
1	14.0%	40.7%	46.0%
2	1.0%	20.6%	9.0% ²⁵
3	0.2%	3.8%	/
More than 3	0.4%	1.3%	/
Average	0.19 ²⁶	0.99 ²⁷	0.60

Table 15: Current number of cars in household (including company cars) – surveys car sharing

²⁴ Ermans, T. (2019)

²⁵ For the general survey among inhabitants of the Brussels Capital Region, we only have data on three categories: 0, 1 and 2 or more.

²⁶ For the calculation of the average number of cars, 'more than 3' was coded as '4'.

²⁷ For the calculation of the average number of cars, 'more than 3' was coded as '4'.

Frankfurt

Results from the Frankfurt case study, where beyond roundtrip station-based and free-floating user groups also additional ones were considered, partially confirm what has been found in Belgium. Figure 3 below shows the number of household cars owned by Frankfurt respondents, grouped according to their car sharing membership at the time of the survey.

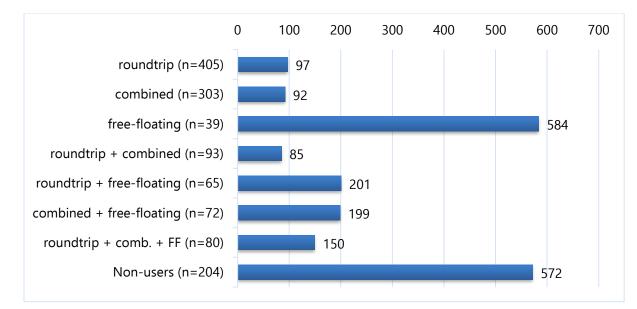


Figure 3: Private cars per 1000 people in selected user groups of the Frankfurt case study

Users of station-based and combined car sharing models indicate very low rates of car ownership, only 97 or 92 cars per 1,000 people. Customers who are registered at the same time for both roundtrip and combined models have only 85 cars per 1,000 people. These values lie well below the target of 150 passenger cars per 1,000 people as recommended by the German Environmental Agency for environmentally vehicle and climate-friendly urban transport in the future.²⁸

By contrast, the users of free-floating car sharing show an above-average car ownership of 584 cars per 1,000 people. The level of car ownership is thus on par with that of non-users (572 passenger cars per 1,000 people in households surveyed). This result is somehow similar to what has been found in the Italian case study and consistent with previous findings in Germany (Bergstad et al., 2018).

It is noteworthy that car ownership level of free-floating car sharing members is significantly lower if they are still using station-based and/or combined models at the same time. This effect was also observed in the previous study (Bergstad et al., 2018).

²⁸German Environmental Agency (Publ.): Tomorrow's Cities. Environmentally friendly mobility, low noise, green spaces, compact housing and mixed-use districts. Dessau-Roßlau, March 2017

4.2.2 Longitudinal perspective: changes in car ownership over time

In this section, the information about car ownership levels in three time points (time of the survey, time of first CS registration and one year before) and their differences are analysed. See section 2 for an explanation on the rationale behind the choice of such time points.

Again the Italian case study is firstly presented, followed by the Belgian and the German one. Comparing changes in the total number of cars among Milan car sharing members in the three periods (Table 12 above), it can be noted that the number of cars has increased by 1.0% between the time when the service was subscribed and when the survey was administered (May 2019) and by 2.4% since one year before. However, these increases are smaller than those of the control group (+4.2%). On the contrary, in Turin the trend was slightly decreasing before the registration (91 total cars one year before and 90 at the first registration) and moderately increasing between the first registration and the time of the survey (Table 13 above). The same happened to the number of cars within non-members households, which increased from 96 to 101. Also in this case the car ownership growth rate is higher among non-members (5.2%) compared to car sharing members (3.3%).

Differences in car ownership over time among Belgian respondents of the full online survey were also evaluated. Car sharing members were not divided into different user groups here due to the low number of answers collected within this survey version. Therefore the results refer to the general sample of car sharing members.

The data of car sharing users presented in the following Table 16 shows a clear decrease in car ownership over time. The average number of cars per household is 0.9 at 12 months before the first registration with a car sharing operator (moment C). At the time of registration with a car sharing scheme (moment B), this number drops to 0.6. This indicator further decreases until the moment of research (moment A).

	A – Number of HH cars in October 2019 [N=52]	B - Number of HH cars at registration [N=52]	C – Number of HH cars 1 year before registration [N=52]
0	63.5%	51.9%	21.2%
1	28.8%	36.5%	67.3%
2	7.7%	11.5%	11.5%
3	0.0%	0.0%	0.0%
4 or more	0.0%	0.0%	0.0%
Average	0.44	0.60	0.90

 Table 16: Evolution of the number of cars in car sharing members households – Belgian full online survey

It is interesting to pay attention to the evolution of car free households and the ones with one car available. The first category increases over time from 21% at moment C to almost two-thirds of the households at moment A. On the contrary, the number of households with one car drops from almost 67% to almost one third of the households. In both situations the biggest change takes place between moment C and B, so in the months before registering with a car sharing organisation.

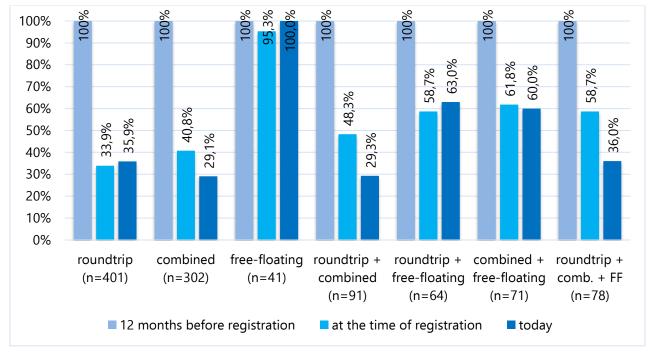
In the Table 17 below, one can deduce how many cars were scrapped or added at what moment of the process. As stated above, the biggest changes took place between moment B and C. Between 12 months before the registration and the first steps into car sharing, 31% of the respondents got rid of one or two cars. However between the registration with the car sharing scheme and the moment of research, an additional 14% of the respondents got rid of one or two cars. Between moment C and A almost half of the surveyed car sharers got rid of one or two cars. There is a clear relation between becoming a car sharing user and a changing number of cars in the household. It is, however, hard to state people own fewer cars due to car sharing. It can also be the other way around: people that decided to own less cars for whatever reason use car sharing as a replacement.

	A-B	A-C	B-C
-2	2.0%	3.9%	2.0%
-1	11.7%	41.2%	29.4%
0	86.3%	51.0%	64.7%
+1	0.0%	3.9%	3.9%

Table 17: Differences in household car ownership levels – Belgian full online survey

In addition, results from internal surveys of car sharing operators (Table 18), where car sharing members were asked if they "*disposed of a car in their family by joining a car sharing organisation*", indicate that almost half of the roundtrip station-based car sharers in Brussels got rid of a car after joining the scheme. Among members of free-floating operators this is almost one out of six (16%).

	Roundtrip station-based [N=291]	Free-floating with operational area [N=762]
No	51.2%	83.3%
Yes	48.8%	16.7%


Table 18: Disposal of cars after joining car sharing organisation – surveys car sharing operators

Concerning the changes in car ownership occurred directly before and during car sharing membership, 1048 out of 1100 respondents of the Frankfurt case study answered completely the questions. Contrarily to the Belgian case study, here a comparison of the evolution of car sharing

membership among user groups of different services has also been carried out. Very different results can be observed among the individual groups presented in Figure 4 below.

Figure 4: Changes in the number of private cars of different user groups

In the case of users of roundtrip car sharing, the number of cars decreased already by 66% in the run-up to the registration with car sharing, and by 59% in the case of users of the combined offer.

The situation is different for users who were registered only for free-floating: here the number of cars fell by only 5% in the same period. However, it should be noted here that the target group recruited for the survey does not represent the entire free-floating car sharing target group (see section 2.3.2).

For those groups that use free-floating in parallel with another car sharing service, however, the number of vehicles fell significantly by around 40%. This phenomenon was also observed in the previous bcs study. Apparently, the parallel use of free-floating with other car sharing alternatives increases the willingness to dispose of private cars.

From the time of registering with car sharing to the time of the survey, the number of vehicles trends differently in the user groups. In the case of users of the combined model (including parallel use of other car sharing alternatives), the number of vehicles fell still further after registration. At the time of the survey, the number of vehicles in this group fell by 71% compared to the 12 months prior to registration. In the case of users of roundtrip car sharing, car ownership stagnated at a lower level during membership.

At the time of the survey, customers who only use free-floating offerings had the same number of cars as they did before registering with car sharing. Cars that had been disposed of in the meantime were purchased again after registration.

Additionally, changes in the number of cars owned by users of different car sharing groups were analysed by differentiating between Frankfurt inner-city and the city as a whole, thanks to the innercity level information collected in the previous STARS study (Bergstad et al., 2018).

Car ownership trends of different user groups belonging to Frankfurt inner-city areas (labelled with F. city c.) and the city of Frankfurt as a whole (labelled with Frankfurt) are presented in Figure 5 below.

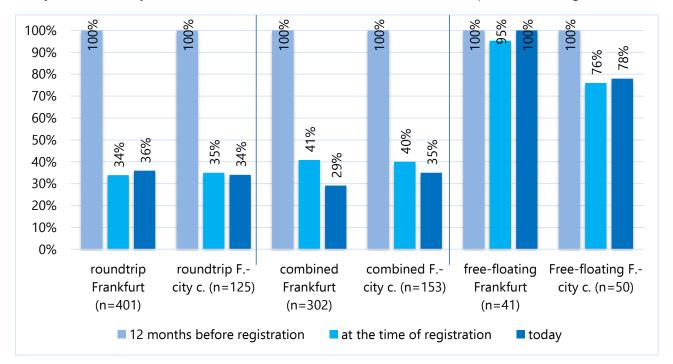


Figure 5: Changes in car ownership of different car sharing user groups sampled in the inner-city residential areas and in the city as a whole

It is notable how little the results for roundtrip and combined models differ between individual innercity residential areas and the city as a whole. The greatest difference is that in the city as a whole, an even higher proportion of car sharing users have decided to dispose of a car after registering.

It would have been expected that comparatively fewer vehicles would be done away with in the city as a whole than in the residential areas close to the city centre. For the parking pressure is often higher in inner-city areas, public transport is denser and infrastructures and everyday destinations are usually closer to home. This assumption proves to be not applicable to Frankfurt.

By contrast, the difference between the inner city and the city as a whole is very pronounced among users who are only registered for free-floating. In relation to the city as a whole, the current study found no change in the ownership rate. In the previous study in residential areas close to the city

centre, however, there was a clearly discernible reduction in car ownership to 78 % at the time of the survey.

4.2.3 Respondents' self-assessment of the influence of car sharing in car ownership-related decisions

In addition to the questions about car ownership levels in the past and present, through which the actual disposal of auto before or during car sharing membership has derived, it is relevant whether car sharing has possibly contributed to the avoidance of new vehicle purchases. This was evaluated in slightly different way among the case studies.

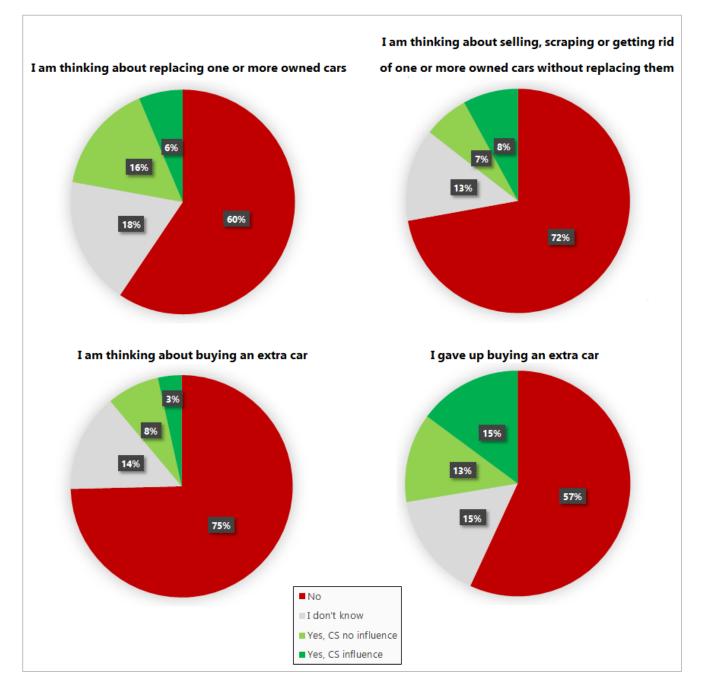
In the Italian case study, the respondents were asked to indicate how likely they would buy a car if the car sharing operator typically used shut down the service in the city (Q37a), by using a Likert scale (1 – Strongly disagree, 5 – Strongly agree). Similarly, respondents of the Frankfurt case study were asked to state how many cars would be available in the households of today's users if there were no car sharing in the future. On the contrary, considering the car sharing operators internal survey whose data were analysed in the Belgian case study, customers were asked how likely it is they would have bought a(n) (additional) car if they had not started car sharing.

Since these questions are of a hypothetical nature, they must be classified methodically different compared to the questions of the actual change in the number of vehicles owned in the past. It is possible here that, with regard to the hypothetical question, the respondents overestimate or underestimate the importance of car sharing for their mobility.

For this analysis, all respondents classified as car sharing members within the Italian case study were considered. Results reported in Table 19 below show that the majority of users would not buy an additional private car in case of car sharing shut down, while very few think they would buy one (about 14% in Milan and 15% in Turin).

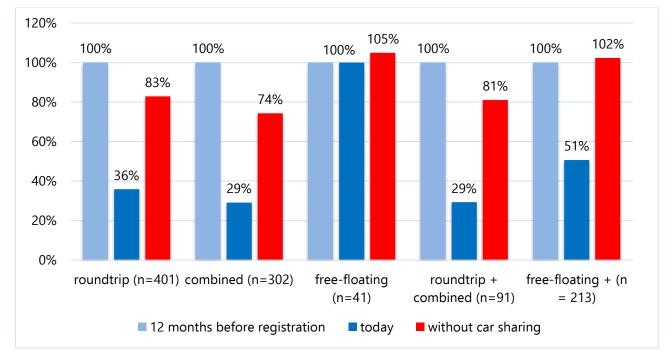
	Car sharing members - Milan [N=485]	Car sharing members – Turin [N=181]
1 – Strongly disagree	239 (49.3%)	97 (53.6%)
2	82 (16.9%)	24 (13.3%)
3	96 (19.8%)	33 (18.2%)
4	47 (9.7%)	19 (10.5%)
5 – Strongly agree	21 (4.3%)	8 (4.4%)

Table 19: Respondents likelihood of buying a car in case of car sharing shut down - answers from
the Italian case study



Concerning the Italian case study, we recall that car sharing (and in particular free-floating car sharing) is adopted by individuals living in households with lower car ownership levels compared to their peers, i.e. individuals with the same socioeconomic characterisation. On the other hand, car sharing members did not decrease the number of cars they own after subscribing to the service, therefore it is not possible to estimate the number of cars substituted by each shared car as done in other researches (Schreier et al., 2018b). This seems a deceiving result in absolute terms, however it is important to frame it in the car ownership trends of the whole population and to observe that the growth rate of cars owned by car sharing members is smaller than that of non-members. Thus, car sharing might have a higher impact on postponing the purchase of additional cars (Melis et al., 2019).

This link between car sharing and car ownership is confirmed by the information collected through the STARS survey (Q25a, Q31a, Q33a, Q36a in Appendix 1), where respondents were asked to assess the likeliness of changes in car ownership at different time points and to which extent car sharing is influencing or influenced their choices. Figure 6 shows the related results for both Turin and Milan.


Figure 6: Car ownership changes perspectives of CS members within the Italian case study

When observing the four pie charts of Figure 6, car sharing seems to have the strongest positive effect in giving up buying an extra car: 28% of CS members agreed with this statement and in particular 15% reported that the car sharing had (at least in part) influence on the decision. On the contrary, very few respondents were thinking about buying an extra car (11%), but also to scrap a car without replacing it; in this case the majority of negative answers comes from respondents having one car at their disposal within the household.

Results concerning car ownership changes in Frankfurt, where as usual car sharing members are classified according to the user group they belong to, are presented in Figure 7 below.

Figure 7: Trend in car ownership without car sharing in Frankfurt user groups (excl. "does not know")

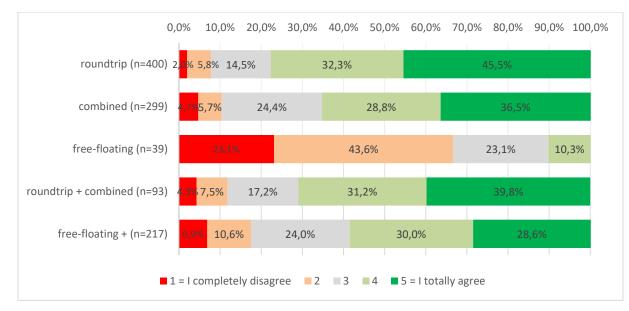
Among users of the station-based or combined models, the number of cars would increase significantly if car sharing were no longer available. This is not surprising given that a large proportion of the car stock has already been disposed of in these groups. Nevertheless, respondents in these groups believe that their car inventory will remain below the level prior to registration. Here, a certain habituation of life without one's own vehicle seems to have transpired.

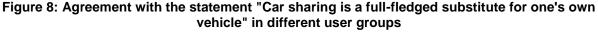
This is clearly different for the user groups "roundtrip + free-floating" and "combined + free-floating". Here, ownership of a vehicle without car sharing would be significantly higher than 12 months prior to registration.

Among those respondents using only free-floating car sharing, vehicle ownership would hardly change without car sharing; this comes as no surprise due to the very high availability of private vehicles in this group.

Finally, results from the Belgian car sharing operators' internal survey are summarised in Table 20 below. 44% of the roundtrip car sharers indicates they considered or were (quite) certain to buy an extra car, among free-floating car sharing users this is 58% of the respondents. More than half of the roundtrip users did not intend to purchase a(n) (extra) car, compared to 27% of the free-floating customers. Before joining car sharing, the group of roundtrip users had less intention to buy (an)

extra car(s) than free-floating users, but it is hard to explain this difference through the different car sharing schemes. It is possible that other dependent variables are at stake here.


	Roundtrip station-based [N=1841]	Free-floating with operational area [N=578]
Yes // We had certainly purchased a(n extra) car	9.7%	21.8%
Probably // We had probably purchased a(n extra) car	10.3%	36.3%
We had considered purchasing a(n extra) car	24.0%	/
Probably not	/	14.9%
No // We wouldn't have purchased a(n extra) car	56.0%	27.0%


 Table 20: Probability of purchasing extra car if no car sharing member – Belgian car sharing

 operators surveys

4.2.4 Respondents' self-assessment of the substitution effect between private cars and car sharing in Frankfurt

Most car sharing users in Frankfurt agree with the statement "Car sharing is a full-fledged substitute for one's own car." Only among users who are registered exclusively with free-floating providers does rejection predominate. Conversely, users of free-floating see car sharing more as an additional option to their own auto – a thesis strongly denied by users of other alternatives but also by parallel users.

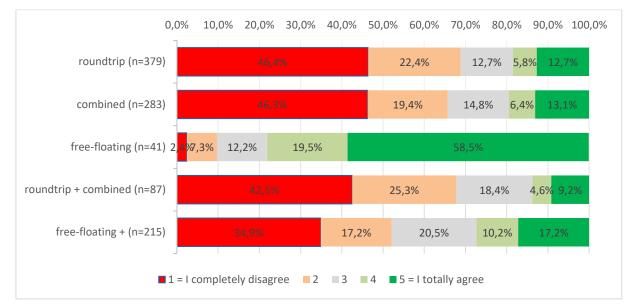


Figure 9: Agreement with the statement "Car sharing is rather an additional option to one's own car" in different user groups

These results coincide with those of the previous study in inner-city residential areas. The results show that the significance of car sharing as a car substitute varies according to the alternatives. Many users attest that roundtrip and combined systems function as car substitutes. But free-floating car sharing has little significance as a vehicle substitute and must be combined with the other systems so that the car sharing offer as a whole is regarded as a car substitute.

The Frankfurt case study provides strong evidence that roundtrip and combined car sharing alternatives might have an impact on car ownership, since in households where station-based or combined car sharing alternatives are used, the number of cars sharply decreases shortly before and during car sharing participation. In addition, a majority of customers consider these car sharing models to be a full-fledged substitute for their own car.

Furthermore, in the hypothetical situation that car sharing would no longer exist, the users of roundtrip and combined car sharing systems assume a sharp increase in the number of their vehicles.

With regard to free-floating car sharing, it can be determined that also in the Frankfurt study it does not in itself have a reducing effect on the number of vehicles and is also not regarded by the users as a full-fledged substitute for a private car. This effect only occurs in combination with the roundtrip and combined systems.

This result marks a deviation from the previous study (Bergstad et al., 2018), in that in the inner-city residential areas a slight impact on car ownership was also noticeable in the customer group that only uses free-floating car sharing. This may have to do both with the different spatial layout of the survey area in the present study and with the unusual layout of the target group recruited here. Both

studies show in context, however, that free-floating car sharing alone has no or hardly any effect on the private vehicle ownership of users.

This has already been established in the study for the city of Frankfurt (Hülsmann et al., 2018). There it was already pointed out that the willingness of free-floating users to dispose of vehicles increases if they use other car sharing alternatives at the same time.

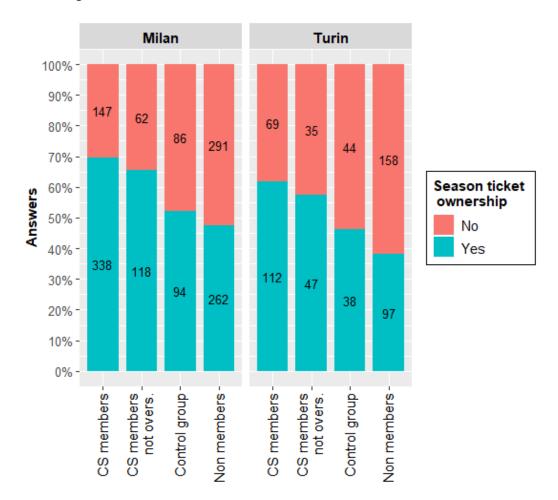
4.2.5 Substitution rate between private cars and car sharing vehicles in Frankfurt

The substitution rate between private cards and car sharing vehicles was computed for the Frankfurt case study only, since this computation cannot be done for Turin or Milan as mentioned above.

The basis for calculating the quota of how many cars are replaced by a car sharing auto is the number of cars actually disposed of (and not reacquired) by users within the 12 month-period prior to registration for car sharing up to the survey date. Since not all users of a model participate in a survey, the cars that have been disposed of are extrapolated to the total number of registered customers and then divided by the number of car sharing vehicles under the offer. However, it must be noted that the users surveyed are not representative of the whole customers' population. People who make more intensive use of the models offered are more inclined to take part in surveys on these models. For this reason, answers to the question regarding the frequency of a model's use last year are compared with the backend data of the providers and a weighting factor is calculated. For both roundtrip and combined models, the substitution rate is 1:10.0 to 1:14.9. This means that for every car sharing vehicle there are, depending on the provider, 10-15 vehicles that have actually been disposed of.

The substitution rate shows that the car sharing offer covers the car use requests of households far more efficiently than would have been possible through private car ownership. If one converts the quota into parking lot lengths, the result is that every car sharing vehicle is able to free (longitudinally parking) vehicles between 50 and 75 meters from the edge of the road.

The hypothetical number of cars that the car sharing customers would have bought if there was no more car sharing was not included in the replacement rate. There are methodological reasons for this: on the one hand, the underlying question is hypothetical and does not impose a real car abolition. On the other hand, the car that was actually abolished and the vehicle that would be purchased if there were no longer any car sharing, may be the same vehicle. Adding up totals on both questions would therefore inadmissibly increase the replacement rate.



4.3 PT season ticket ownership and bike sharing membership

Car ownership changes are by far the most important impact that is expected by car sharing and it has been therefore extensively analysed in section 4.2. However, it is also important to have a look at the impacts in the levels of use of other modes, which is primarily influenced by the possession of transit passes or the participation in bike sharing programs.

The analysis of public transport season ticket ownership led to slightly different results between the two Italian cities. The differences in PT season ticket ownership for car sharing members, members not oversampled, non-members and the control group are reported in Figure 10 below. In both cities car sharing members seem to own more season tickets, 70% of car sharing members against 48% of the non-members in Milan and 62% compared to 38% in Turin (first and fourth column for both cities of Figure 10); these values might imply a higher use frequency of public transport, therefore it will be analysed in the following 4.4.1. In general, less respondents in Turin have a season ticket than in Milan, which might due to the differences in the PT offer.

Figure 10: Differences in public transport season ticket ownership between car sharing members and non-members of the Italian case study



When comparing the not oversampled members and the control group (second and third column for both cities of Figure 10), these differences are less noticeable, however, but still significant²⁹.

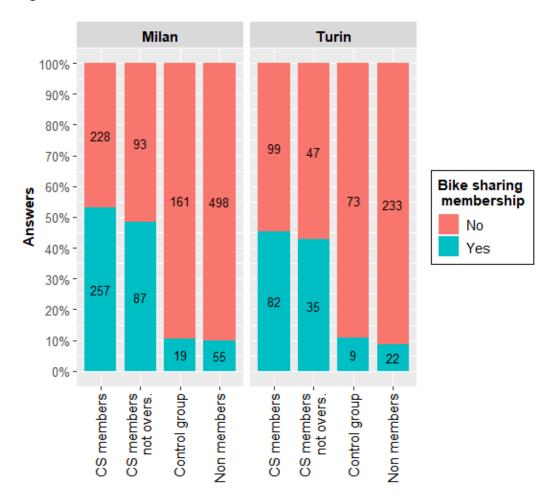
In Turin, 58% of not oversampled members owns a PT season ticket while 47% of non-members within the control group does. The difference in this case is not significant³⁰, meaning that the observed differences are due to the sample variability. Once again, this result might be related to the PT use frequency, that will be analysed in subsection 4.4.1.

A similar analysis was carried out within the Belgian case study, whose results are shown in Figure 11 below. Here the comparison was made between respondents of the full online survey (both car sharing users and non-users) and respondents of the Flanders panel (non-users only, reported in the right column).

Figure 11: Differences in public transport season ticket ownership between car sharing members and non-members of the Belgian case study

According to the results of the full online survey, there is no big difference between car sharing users and non-users, concerning the rate of season tickets for public transport. The panel survey among almost 1000 car sharing non-users confirms this finding. However, results from section 4.4.1 show

²⁹ χ^2 = 6.1, p-value < 0.05



car sharing members use public transport (bus/tram, metro and train) more often than non-car sharing users.

In addition to the ownership of season tickets for public transport, respondents were also asked if they have a subscription to a bike sharing scheme.

Outcomes from the analysis carried out on the bike sharing membership in Milan and Turin are shown in Figure 12 below.

Figure 12: Differences in bike sharing membership between car sharing members and non-members of the Italian case study

In both cities, much higher bike sharing membership is reported among car sharing members, proving that this group is more open to share all transport modes, not only cars. Differences in bike sharing membership between not oversampled members and the control group are significant in Milan and Turin³¹.

³¹ Milan χ^2 = 61.8, p-value < 0.01; Turin χ^2 = 21, p-value < 0.01

Results coming from Belgian case study are shown in Figure 13. According to the full survey results, the subscription rate to bike sharing schemes tends to be much higher among car sharing users than non-users (44.9% versus 11.8%).

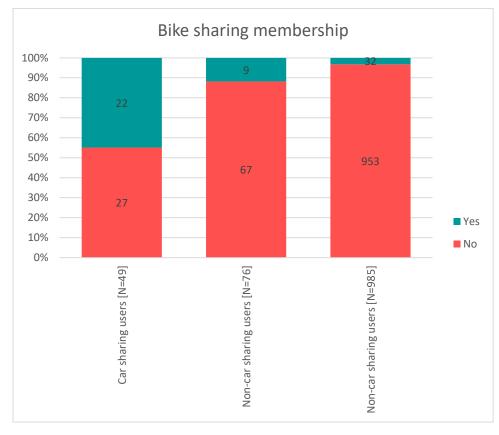
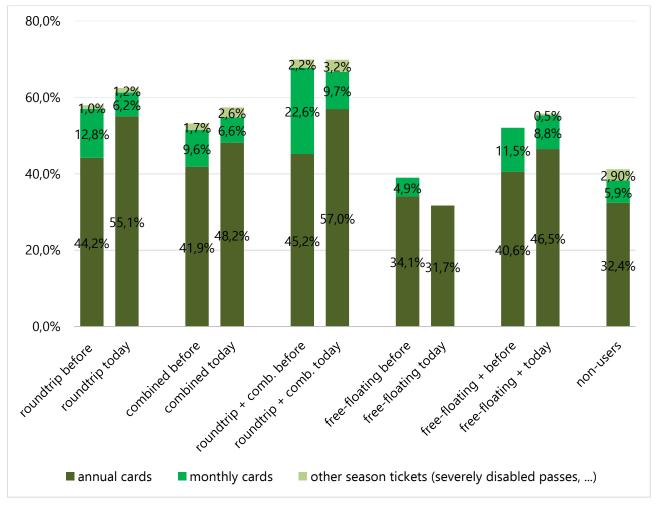


Figure 13: Differences in bike sharing membership between car sharing members and non-members of the Belgian case study

The analyses of the Belgian panel study results show that the registration to a bike sharing service is significantly higher among the group of respondents younger than 34 years old. It is also interesting to notice that the rate of respondents already using bike sharing is significantly higher among people indicating that it is (very) likely they will become a car sharing member in the future³². Not surprisingly, the number of registrations to bike sharing schemes and public transport season tickets is the highest among respondents without cars in their household³³. Additionally, respondents driving a car less frequently tend to have more season tickets than people that drive a car every day³⁴.

³² Among respondents indicating it is (very) likely they will become a car sharing member 13.8% has a subscription to a bike sharing scheme. Among respondents indicating it is (very) unlikely only 2.2% has a subscription.


³³ 58.8% of respondents without a car have a season ticket for public transport, versus 26.7% of respondents with one car and 17.9% of people with two cars. 10.3% of respondents without a car have a season ticket for public transport, versus 2.2% of people with one car.

³⁴ Among respondents driving a car daily 10.2% has a season ticket for public transport, among respondents driving a car less than weekly this is 37.8%.

The STARS travel survey version used in the whole city of Frankfurt contained some more specific questions about the type of public transport season tickets owned and the change in its ownership since participating to car sharing (see the Q6 variation in Appendix 2). The different kind of PT tickets owned by user groups at the time of the survey and before the car sharing registration are presented in Figure 14 below. The interviewed users already had an above-average number of season tickets before registering for car sharing – on average, 55.7% of the respondents were owners of monthly passes, job tickets, annual passes or severely disabled passes. Even among users who are only registered for free-floating, 39% already had a season ticket before registering (see the seventh column of Figure 14). According to the study "Mobility in Germany 2017^{#35}, 34 % of people living in metropolises (such as Frankfurt) are equipped with a public transport season ticket.

Figure 14: Changes in the possession of travel cards before registering with car sharing to date In most of the surveyed groups, the proportion of season ticket holders has continued to rise since they took part in car sharing. On average across all groups, 59.1% of those surveyed were time card holders at the time of the survey. The exception is the group "Free-floating", were the proportion of

people with a monthly or annual pass fell significantly to only 31.7% (see the eight column of Figure 14).

The group "roundtrip + combined," in which 70% own a season ticket, is the front-runner in terms of monthly and annual season tickets.

It is further notable that the number of public transport annual passes has increased in almost all groups (on average by 8 percentage points) since registering for car sharing. The exception here is also the "Free-floating" group.

The claim made occasionally in the media that car sharing (in general) cannibalises public transport can be refuted by the present study. Roundtrip and combined services strengthen and complement many more buses and trains. This also applies to user groups registered parallel to free-floating.

4.4 Differences in general mobility habits

4.4.1 Use frequency of different travel means for car sharing users and not users

The use frequency of different transport means of the full sample of car sharing members, of the not oversampled sample of car sharing members, of the control group and the non-members sample are reported in Figure 15 (Milan) and Figure 16 (Turin).

It is worth stressing that the observed differences between car sharing members and non-members (first and fourth row of each transport mode) might be biased since in the former group contains oversampled observation. Not oversampled members and the control group share similar socioeconomic characteristics instead (as described in 2.1.2), thus the observed differences are not related to those attributes and might be ascribed to the car sharing membership.

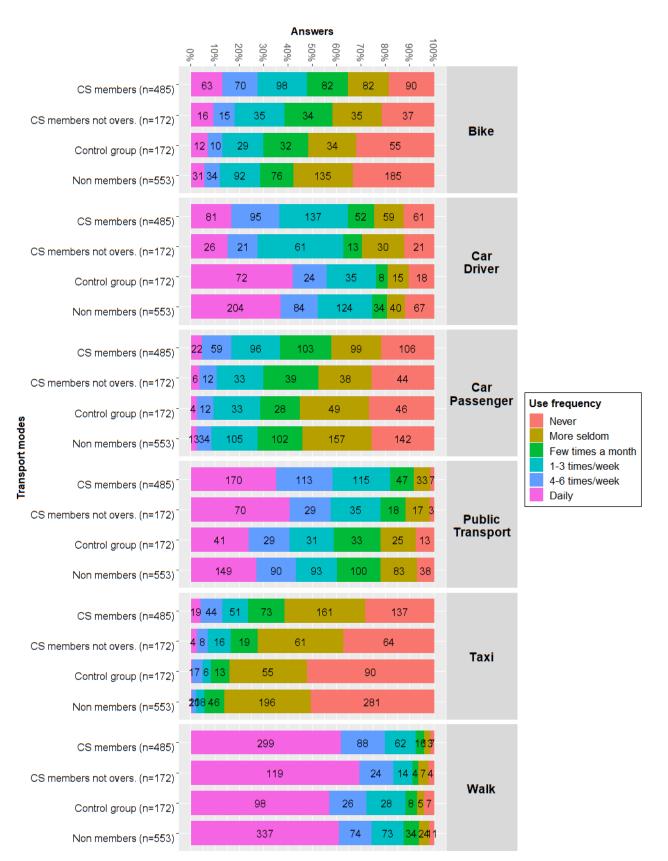


Figure 15: Use frequency of different travel modes – car sharing members and non-members of Milan

Car sharing members of Milan more frequently use active modes and public transport than nonmembers, however these differences are not statistically significant for walk and bike use³⁶. On the contrary, significant differences were found between the two groups in the use of public transport: there are more car sharing members that use public transport on a daily basis³⁷ and less that use it few times a month or never, compared to non-members of the control group.

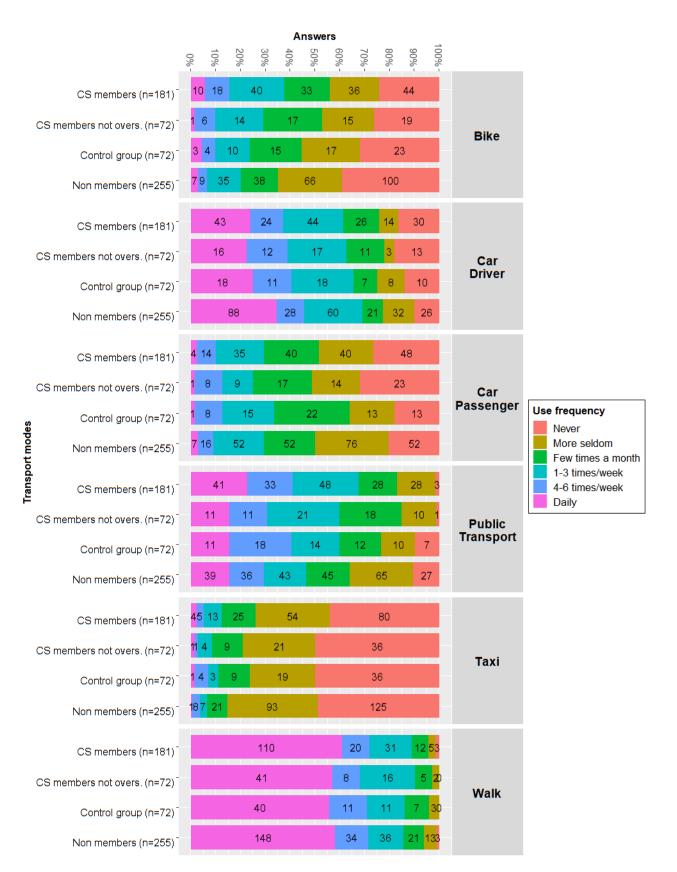
Concerning the use of the car as driver, less car sharing members drive a car every day but more use it sporadically (1-3 times a week) compared to non-members of the control group³⁸.

Taxi use frequencies seem quite low compared to other modes, but significant differences still exist between CS members and non-members³⁹; in particular, more CS members use taxis from one up to three days a week, and few members that never use it.

Compared to the above results from Milan, modal use frequencies of Turin's CS members are quite similar to the ones of the control group, as showed in Figure 16 below; statistical tests confirm that differences are not significant indeed. This might be due to several reasons: firstly, the limited number of respondents collected within the city of Turin. Secondly, in Turin there are less car sharing services, which additionally have been operating for fewer years compared to those operating in the city of Milan; therefore car sharing still might be not seen as a mobility alternative to some use of the private car, and consequently mobility habits of the car sharing members might not be changed yet.

Finally, the two cities are different in terms of transport policies (Melis et al., 2019) and the offer of transport modes as a whole (beyond car sharing). Recently (February 2019), the city of Milan introduced a new limited traffic zone, the Area B, along with the existing Area C; these actions aim to reduce the number of relatively more polluting cars that enter into the city. It has been estimated that the number of accesses of polluting cars decreased by 13% during the first six months of activity of this measure⁴⁰. Besides these push measures, the public transport system offers plenty of solutions; it is composed of four underground lines, 12 metropolitan train lines, several tram lines and buses, which guarantee high accessibility to the city. Furthermore, in Milan many sharing mobility and micro-mobility services are available, such as scooter sharing and bike sharing (Ciuffini et al., 2019). It is quite insightful to compare the results of the two Italian cities since it can be concluded that car sharing alone is not sufficient to trigger changes in mobility behaviour; it needs to be integrated into a transport system that can substitute the need of a private car in several ways.

 $^{^{36}\}chi^2$ test, p-value>0.05


 $^{^{37}}$ Daily use χ^2 =11.2, p-value <0.01

³⁸ Daily use χ^2 =30.2, p-value<0.01, 1-3 times/week χ^2 =9.8, p-value<0.01, more seldom χ^2 =5.8, p-value<0.05 ³⁹ 1-3 times/week χ^2 =4.8, p-value<0.05, never χ^2 =7.9, p-value<0.01

⁴⁰ <u>https://www.comune.milano.it/-/area-b.-in-sei-mesi-diminuito-del-13-il-transito-delle-auto-inquinanti</u> - Accessed November 25th, 2019

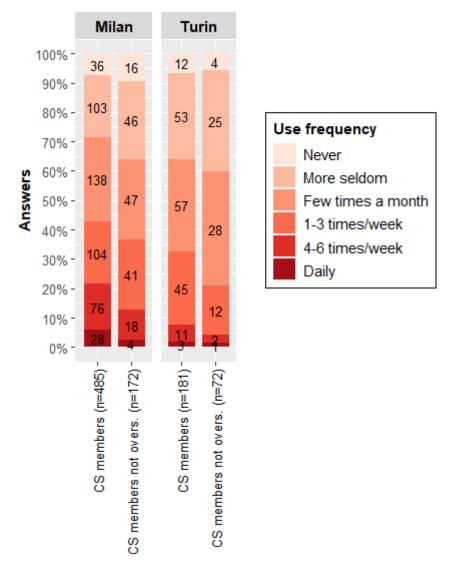


Figure 16: Use frequency of different travel modes – car sharing members and non-members of Turin

In addition to the use frequency of different transport means, respondents enrolled in a car sharing service were asked to indicate how many times in a month they use shared cars, and also the frequency in different periods of the year.

Figure 17: Car sharing use frequency among CS members of the Italian case study

The majority of members stated of using car sharing few times a month in both Milan and Turin city, as showed in Figure 17. Observed differences between CS members and not oversampled CS members in both cities are due to statistical fluctuations within the samples⁴¹. In general, members of Milan use the service more frequently (there are more observations in daily frequency and 4-6 times/week) than Turin members, also on a seasonal basis.

⁴¹ Milan χ^2 = 8.2, p-value>0.05, Turin χ^2 = 4.1, p-value>0.05

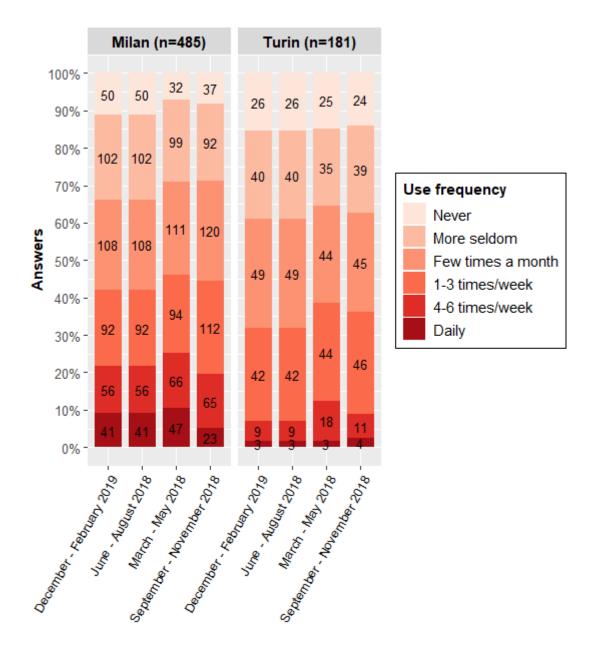


Figure 18: Seasonal car sharing use frequency in Milan and Turin

A similar comparison was carried out on mobility patterns of car sharing users and non-users of the Belgian case study. The results presented in the following Table 21 are based on the answers collected through the full online survey (65 users and 110 non-users).

Modes		Never	More seldom	Few times a month	1-3 times / week	4-6 days / week	Daily	Average
Bike	CS	1.8%	0.0%	3.5%	7.0%	12.3%	75.4%	5.54
DIKE	N-CS	12.9%	10.9%	8.9%	13.9%	18.8%	34.7%	4.19
Shared bike	CS	66.7%	11.1%	16.7%	5.6%	0.0%	0.0%	1.61
Shareu Dike	N-CS	81.8%	11.1%	6.1%	1.0%	0.0%	0.0%	1.26
Walk	CS	1.8%	8.8%	15.8%	15.8%	12.3%	45.6%	4.65
waik	N-CS	4.0%	5.0%	10.9%	24.8%	20.8%	34.7%	4.57
Car driver	CS	48.1%	15.4%	21.2%	9.6%	5.8%	0.0%	2.10
	N-CS	12.9%	9.9%	14.9%	27.7%	8.9%	25.7%	3.87
Car sharing	CS	10.7%	25.0%	53.6%	10.7%	0.0%	0.0%	2.64
car sharing	N-CS	/	/	/	/	/	/	/
Car	CS	18.5%	42.6%	38.9%	0.0%	0.0%	0.0%	2.20
passenger	N-CS	18.2%	26.3%	26.3%	25.3%	3.0%	1.0%	2.72
Тахі	CS	85.2%	14.8%	0.0%	0.0%	0.0%	0.0%	1.15
Ιαλί	N-CS	85.0%	15.0%	0.0%	0.0%	0.0%	0.0%	1.15
Bus/tram	CS	19.3%	33.3%	29.8%	12.3%	5.3%	0.0%	2.51
	N-CS	37.0%	30.0%	19.0%	6.0%	3.0%	5.0%	2.23
Metro	CS	55.6%	27.8%	7.4%	3.7%	3.7%	1.9%	1.78
WEUU	N-CS	61.0%	28.0%	7.0%	2.0%	1.0%	1.0%	1.57
Train	CS	1.8%	23.2%	37.5%	21.4%	14.3%	1.8%	3.29
I I AIII	N-CS	22.8%	29.7%	18.8%	14.9%	8.9%	5.0%	2.72

Table 21: Use frequency of different travel means – full online survey [car sharers N = 65 // non-car sharers N = 110]

Three quarters of the car sharers uses a bike every day, among non-car sharers this is true for almost one third (34.7%) of the respondents. More in general, on an ordinal frequency scale from 1 to 6^{42} , car sharers score a 5.5 for the use of bikes, non-car sharers end up with 4.2. The difference in use of shared bikes is not big, however the analysis in paragraph 4.3 shows far more car sharers have a subscription to a bike sharing scheme than non-car shares. The frequency of doing trips by foot is a bit higher among car sharing users, but the difference is negligible.

Furthermore, car sharing members use a private car less frequently than non-car sharers, as expected given the lower car ownership rates that were analysed in section 4.2. Only 15% drives a private car

⁴² With 1 = never and 6 = daily use.

1 to 3 times a week or more, among non-users this number raises to 62%. Even considering the frequency of use of shared cars by car sharing, in general they use a car less frequently than non-car sharers. The frequency of using a taxi is almost exactly the same in both groups. Being a car passenger is a bit more frequent among non-car sharing members, but the difference is not huge. This confirms non-car sharing members do trips by car more often, both as a driver and as a passenger.

Car sharers are the most frequent users of bus, tram, metro and train. If we take a look at the number of respondents that never or more seldom uses the different travel means, we see this percentage is higher among non-users⁴³. The difference is the biggest for trips by train. Almost one out of four non-car sharing users never uses a train, whereas only 2% of the car sharing practitioners never uses a train.

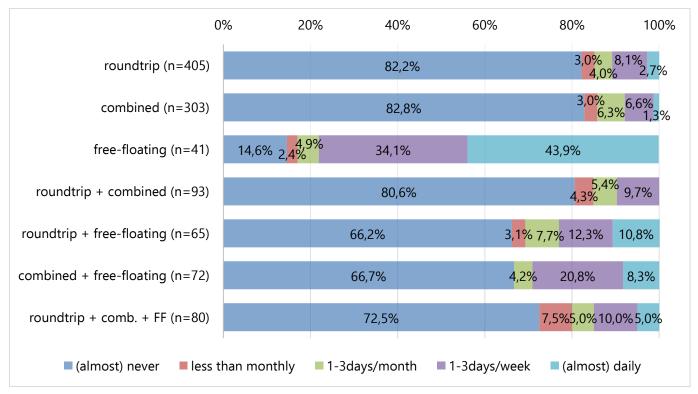
In conclusion, car sharing members more often choose for active modes of transportation (especially bike) and also do more trips with public transport than non-car sharers.

4.4.2 Use frequency of different travel means among different car sharing user groups

Differently from the Italian and Belgian case studies, within the German case study the use frequency of different travel means was evaluated only for car sharing members, thus no comparison with nonmembers is presented here. However, a more detailed descriptive analysis on use of travel means has been carried out by comparing different car sharing user groups.

A general overview of the mobility behaviour of car sharing users is presented in Table 22 below. The dominant means of transport for trips nearby the place of residence are the bicycle, bus and train. In view of the large number of car-free households, privately owned cars play no role. Car sharing is also rarely used. Only 8% of respondents use a car sharing vehicle at least once a week, only 0.4% on a daily basis. It is notable that in everyday use car sharing plays merely a subordinate role.

⁴³ 67% of non-car sharing users never or more seldom uses bus or tram, whereas 53% of car sharing members never or more seldom uses bus or tram. 89% of non-car sharing users never or more seldom uses a metro, whereas 84% of car sharing members never or more seldom uses a metro. 53% of non-car sharing users never or more seldom uses a train, whereas 25% of car sharing members never or more seldom uses a train.



All users [N = 1059]	(almost) never	Less than monthly	1-3 days /month	1-3 days /week	(almost) daily
Car driver	76.9%	3.2%	5.1%	10.1%	4.7%
Car passenger	67.9%	15.1%	11.2%	4.9%	0.8%
Car sharing	11.0%	42.9%	38.1%	7.6%	0.4%
Bike (in everyday life)	18.6%	7.6%	10.0%	16.7%	47.1%
Bike (leisure time)	15.2%	10.8%	16.6%	22.8%	34.7%
Public transport	1.8%	6.2%	24.6%	24.8%	42.5%
Тахі	52.8%	34.5%	10.9%	1.8%	0.1%
Walking	2.6%	2.5%	7.2%	16.8%	70.9%

Table 22: Use of transport means by Frankfurt car sharing users

When it comes to analyse differences in mobility habits among user groups, the use frequencies are separately analysed for each transport mode.

The car sharing members use frequency of private car is presented in Figure 19 below.

Figure 19: Frequency of private car use as driver by Frankfurt car sharing users

As expected, the individual car sharing user groups differ in terms of the use of a private car or company car, as a driver. More than 80% of users of the roundtrip and combined systems use their

own car (almost) never or less than monthly. This can be explained by the high number of car-free households in these groups. A further 8% drive a private car less frequently than once a week.

By contrast, 43.9% of users registered exclusively for free-floating services drive a private car themselves (almost) daily. Another 34.1% drive their own car at least once a week. In this group, as well, car use reflects the number of cars – in this case, the high car ownership rate and the low number of car-free households.

On the other hand, users who along with free-floating are also registered for roundtrip and/or combined systems show a use of transport means similar to the users of the roundtrip or combined systems. The proportion of respondents who do not at all use their own car is somewhat lower for "free-floating +", while the frequent use of a vehicle as a driver is somewhat higher. This also corresponds to the above analysed car ownership rates.

At a glance, a direct context can thus be established between the frequent use of a private car and the number of cars in the individual user groups.

Regarding the use of bicycles in everyday life reported in Figure 20, the differences between users of roundtrip and/or combined systems on the one hand and of the free-floating alternative on the other are not as striking as in the case of vehicle use, but they are quite clear.

0	% 2	20%	40)%	60	% 80	0% 100%
roundtrip (n=405)	18,3%	8,9%	8, 1% 1	15,1%		49,6%	
combined (n=303)	21,1%	<mark>5,0%</mark> 1	1,2%	16,5%		46,2%	6
free-floating (n=41)	26,8%		14,6%	17,	1%	14,6%	26,8%
roundtrip + combined (n=93)	17,2%	7,5% 1 [°]	1,8% 1	12,9%		50,5%	
roundtrip + free-floating (n=65)	16,9%	13,8%	15,4	% 1	3,8%	40,	0%
combined + free-floating (n=72)	13,9% <mark>5,6</mark> 9	<mark>%</mark> 8,3%	2	9,2%		43,1	%
roundtrip + comb. + FF (n=80)	13,8% 3 <mark>,8%</mark>	<mark>5</mark> ,2%	22,5%			53,8%	
■ (almost) never less than monthly 1-3days/month 1-3days/week (almost) daily							

Figure 20: Frequency of bicycle use in the everyday lives of Frankfurt car sharing users

Almost half of all respondents in the "roundtrip" group use bicycles for everyday purposes on a daily basis. In the "combined" group, only slightly fewer people cycle daily.

In the case of users who are only registered for a free-floating model, only slightly more than a quarter ride their bicycles every day. This group also includes the majority of users who rarely use a bicycle for everyday purposes. Across the groups, however, the differences in non-use are not so divergent.

In the group "roundtrip + combined + free-floating", the proportion of daily bicycle users is the highest. More than three-quarters of the respondents in this group use their bicycles at least once a week. The differences in the use of bicycles for purposes of leisure are smaller between the groups studied.

0	%	20%	4()%	60%	%	80	% 100
roundtrip (n=405)	14,6%	10,1%	15,3%	21,0)%		39,	0%
combined (n=303)	17,2%	10,9%	14,2%	2	2,8%		3	5,0%
free-floating (n=41)	17,1%	19	,5%	22,0%		14,6%		26,8%
roundtrip + combined (n=93)	15,1%	9,7%	22,6%		17,2%		3	5,5%
roundtrip + free-floating (n=65)	10,8%	16,9%	23,5	1%	18,5	5%		30,8%
combined + free-floating (n=72)	15,3%	11,1%	20,8%		27,	8%		25,0%
roundtrip + comb. + FF (n=80)	13,8%	5,0% 13,	8%	4	1,2%			26,2%
■ (almost) never	less than	monthly	1-3days/r	nonth	1-3days,	/week	almo	st) daily

Figure 21: Frequency of bicycle use for purposes of leisure of Frankfurt car sharing users

Overall, car sharing customers across all groups use bicycles with greater frequency than average, both in everyday life and for purposes of leisure. According to "Mobility in Germany 2017,"⁴⁴ 38% of people in major cities (such as Frankfurt) use their bicycles at least once a week. That percentage lies in this study between 53.8% and 76.3%. The only exception in the present survey is the group of respondents who are only registered for free-floating.

In comparison to the previous study in residential areas close to the city centre, in this study the proportion of those who use their bicycles daily is significantly higher in all comparable groups.

The high frequency of bicycle use, especially in the user groups the majority of which no longer own their own vehicles, shows how important a well-developed bicycle infrastructure is in order to support multimodal transport behaviour.

The use frequency of public transport of different car sharing users groups is presented in Figure 22 below.

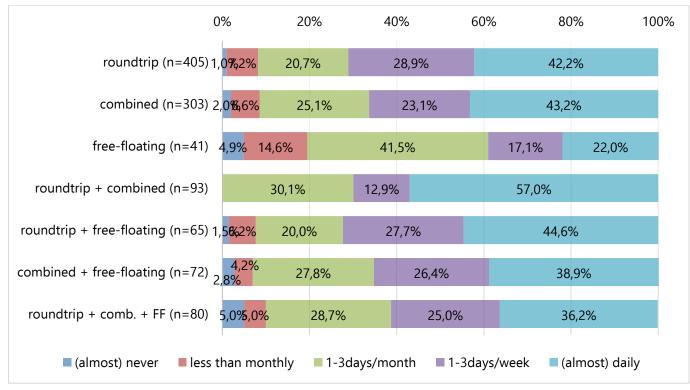
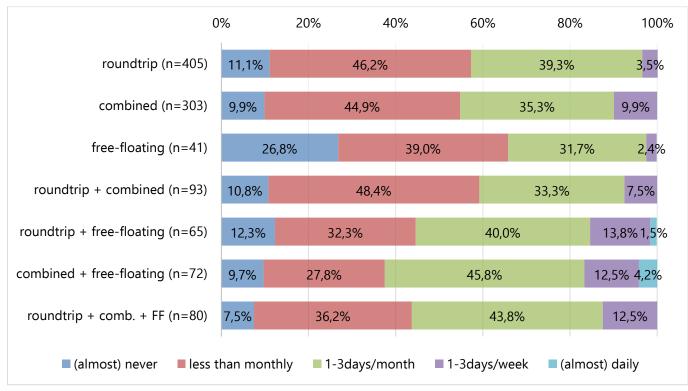


Figure 22: Frequency of public transport use by Frankfurt car sharing users


Buses and trains are intensively used by car sharing users across all groups. The proportion of almost daily users in the groups lies between 36.2% and 57%. Between 60% and 70% of respondents in all groups travel with public transport at least once a week. The group of those who use free-floating car sharing exclusively represents an exception. Here, only 22% travel by bus or train every day. Even in this group, however, more than 80% of those surveyed travel by bus or train at least once a month, just under 40% at least once a week.

The present study thus shows that the high affinity of car sharing users for public transport, as already established in the previous study, is not limited to residential areas close to the city centre. For the survey area of the entire city of Frankfurt, the shares of daily bus and train use in comparable groups are in some cases even significantly higher than the inner city values of the previous study.

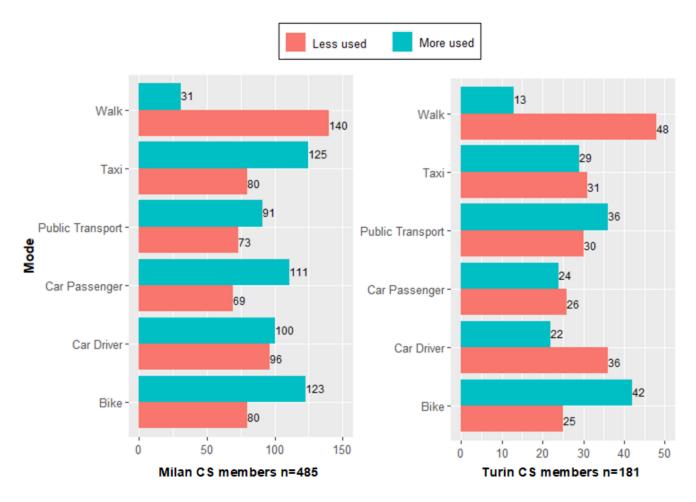
Finally the use frequencies of car sharing by different user groups are presented in Figure 23.

Figure 23: Frequency of car sharing use by Frankfurt users

Car sharing vehicles are apparently only seldom needed by users. Most users sit one to three days a month or less than monthly in a car sharing vehicle. Only a few customers book a shared car at least once a week or even more often.

Only those customers who subscribed several car sharing systems will be able to use car sharing vehicles somewhat more frequently. In these groups, the proportion of those who sit 1 to 3 times a week in a car sharing auto increases to 13.8%. It seems that users with more memberships in different car sharing systems also tend to make more intensive use of the offerings.

4.4.3 Changes in mobility behaviours after subscribing to car sharing


The introduction of car sharing might change how other means of transport are used. Additional mobility options are competing with previously used means of transport for users' daily trips. If this circumstance leads to one means of transport replacing another, this shift can also bring about changes in overall mobility behaviour. With car sharing, such change takes place above all when car sharing replaces the private car in the household.

In the framework of this study, all car sharing users were asked to what extent their use of different means of transport has changed since taking part in car sharing. This does not expressly mean an analysis of changes in the modal split, but merely a self-assessment by users.

Changes in mobility behaviours stated by free-floating car sharing members of Milan and Turin are reported in Figure 24.

Figure 24: Changes in travel habits after joining car sharing within the Italian case study

In both cities, car sharing members are using more public transport and bike than before their subscription (in the sense that the difference between respondents who use more and the ones who use less these transport modes is still positive). On the contrary, members on average walk less.

Changes in the use of taxi and private car are different for Milan and Turin members. In Milan there are more car sharing members that are using taxi more frequently than in the past, while in Turin there is almost a balance; however slightly few members use more the taxi than before. The use of cars, as driver or passenger, seems a bit reduced among car sharing members of Turin: more respondents stated using less the car than before, especially when it comes to drive a car.

On the contrary, the majority of members uses the car as a passenger more frequently than in the past in Milan. This is also the case of driving a car, even if to a lesser extent. Matching this information with the previous analysis of the use frequency, it is worth noting that car sharers still use cars not so frequently albeit they stated to have increased its usage. Here it is not clear if respondents might have perceived a higher use of car due to their use of shared cars, which has been enabled after the car sharing subscription or, in the case of the use as passenger, the use of car pooling solutions.

Changes in mobility behaviour among car sharing members after their subscription to a car sharing platform were also analysed in the Belgian case study; the results are here presented through Table 23.

Members of car sharing schemes indicate to do more active trips (by bike – shared or private - and on foot) than before they started sharing cars. Interestingly, more than half of the respondents did not use a shared bike before their subscription with car sharing. Apparently a shared car does not come alone. Concerning the use of cars and taxis, the respondents of this research seem to have lowered their car use after becoming a car sharer. Only the use of taxis increased, which is a logic effect of not having access to their own car (or to a shared car) at all times and all places. At last, also the use of public transport modes increased after becoming a car sharing member in Flanders. The most considerable growth can be found among the number of trips per train. These results reflect earlier STARS research stating that car sharing members do more active trips and trips with public transport after their subscription to a car sharing scheme (Bergstad et al., 2018).

	I didn't use this mode of transport before registration	More frequently than before registration	As many as before registration	Less frequently than before registration
Bike	1.8%	30.4%	60.7%	7.1%
Shared bike	53.7%	11.1%	31.5%	3.7%
By foot	0.0%	17.9%	78.6%	3.6%
Car driver	7.1%	10.7%	25.0%	57.1%
Car passenger	5.5%	18.2%	47.3%	29.1%
Тахі	49.1%	7.3%	43.6%	0.0%
Bus/tram	7.1%	25.0%	57.1%	10.7%
Metro	27.3%	12.7%	58.2%	1.8%
Train	1.8%	37.5%	53.6%	7.1%

Table 23: Change in mobility behaviour – full online survey in Belgium, only car sharing users[N = 56]

Relying on data coming from internal surveys of car sharing operators, differences between members belonging to different car sharing categories were also analysed (see Table 24). Among members of roundtrip station-based systems in the Brussels Capital Region, the number of people that started to do more trips by bike is higher than the group doing fewer trips by bike. Among members of freefloating platforms, these groups are equal, even with slightly more respondents doing fewer trips by bike. This way, the impact of free-floating car sharing schemes on bike is negligible. The balance for trips by foot is more positive. For both categories of car sharing, the number of members doing trips

by foot increased. Among users of station-based car sharing schemes the use of a car (in all forms) dropped clearly, while the use of cars decreased less spectacularly among users of free-floating systems. It seems that a big part of trips done by private car are now done with a shared car.

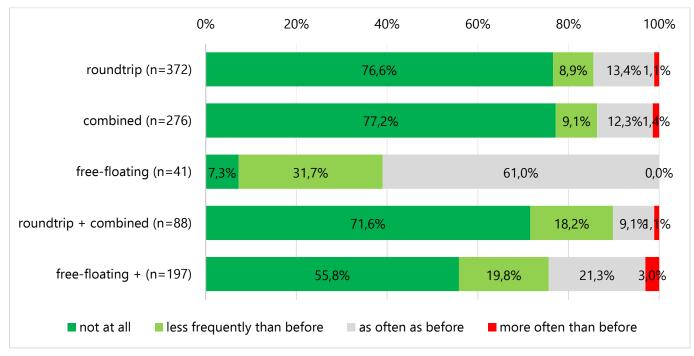
At last there are some remarkable differences concerning the use of public transport. For all modes (tram, bus, metro and train), the frequency of use by members of free-floating schemes dropped after registration. Among roundtrip station-based car sharers the use of bus, tram and metro increased, the use of trains is more or less stable.

Unlike in the Italian case study, only data on the changes in mobility behaviour after subscribing to a car sharing platform were available. Therefore it is not possible to know the current use of transport means and derive strong conclusions, however from the analysed data it seems that the impact on users of the two car sharing systems is not the same. Members of roundtrip station-based schemes tend to do more trips by bike and with busses, trams or metros after they became a car sharing member. The members of free-floating schemes, on the other hand, do not use these modes more than before or in some cases even less than before.

		(Much) Less often	Unchanged	(Much) More often
Bike	RTSB	8.3%	75.1%	16.6%
DIKE	FFOA	9.5%	81.3%	9.2%
Walk	RTSB	4.0%	71.5%	24.5%
vvaik	FFOA	8.0%	78.2%	13.8%
Car sharing &	RTSB	45.0%	42.9%	12.0%
taxi	FFOA	21.9%	61.3%	16.8%
Motorbike /	RTSB	12.6%	85.1%	2.3%
scooter	FFOA	4.5%	93.0%	2.5%
Bus / tram /	RTSB	8.1%	66.7%	25.2%
metro	FFOA	28.7%	60.6%	10.7%
Train	RTSB	18.8%	64.1%	17.2%
IIdill	FFOA	9.3%	87.0%	3.6%

Table 24: Change in mobility behaviour – internal surveys car sharing operators

[N roundtrip station-based = 2085 // N free-floating operational area = 652]


Similarly to the analyses carried out within the Belgian case study, differences between members belonging to different car sharing categories were also analysed in Frankfurt. However, since here

car sharing members are divided in many more user groups, the results are separately presented for each transport mode.

According to the results presented in Figure 25 below, the use of private car, providing it is still present, has declined significantly since participating in car sharing. More than three-quarters of respondents of the roundtrip and combined models no longer use their own vehicle at all. In the other groups, the use of their own vehicle has also fallen sharply. This can be explained by the high proportion of car-free households in these groups. Against the background of the high car ownership and of the very low car sharing usage, it is noteworthy that even users who are only registered for the free-floating system have stated to just under one third that they use their own vehicle less than before.

Figure 25: Change in use of private car since participating in car sharing (without "I cannot say")

Since participating in car sharing, a good third of respondents in almost all groups travel more frequently by public transport than in the past (Figure 26). Figure 26 shows that the proportion of those who use buses and trains less frequently than before is no higher than 15 % in any group. Free-floating car sharing users constitute one exception, where the group of those who use public transport less often is just as large as the group reporting more frequent use.

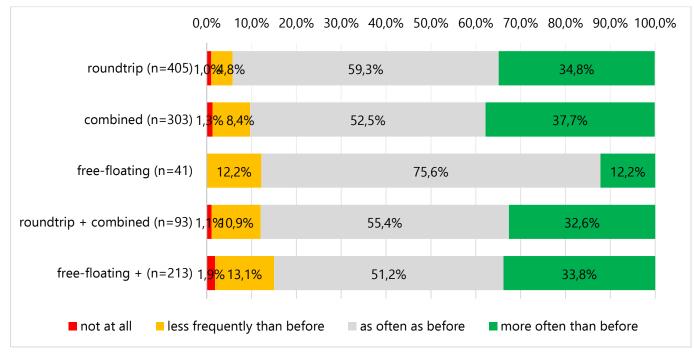


Figure 26: Change in the use of public transportation since participating in car sharing (without "I cannot say")

In the "roundtrip" group, for each user travelling less frequently with public transport since registering for car sharing, there are seven users who travel with public transport more frequently. The proportion of customers travelling by public transport less frequently than before rises slightly, the more varied the car sharing service is available to the customer.

More than half of all respondents use buses and trains just as often as before. In view of the already very high proportion of time ticket holders in these groups, even more frequent use of buses and trains is no longer possible for many.

Concerning non-usage patterns of public transport in Frankfurt, only between 4.3 % and 8.8 % of the respondents stated that they had not used public transport at all before registering for car sharing. The only exception is the group of free-floating users, where 22% stated that they had not used local public transport at all before registering with car sharing.

Since registering with car sharing, the proportion of those who do not use local public transport has again almost halved in all groups (from an average of 8.3 % to 4.5 %). After registering with car sharing, an encouraging 10 % of free floaters made their first acquaintance with local public transport.

How intensively buses and trains are used can be deduced from the question of what type of tickets are usually used.

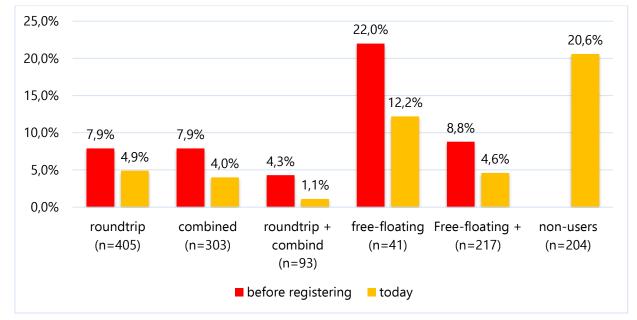
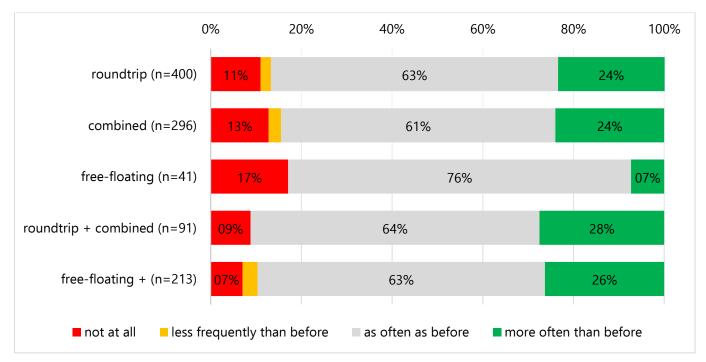



Figure 27: Non-use of public transport at their place of residence

Finally, Figure 28 below shows that since participating in car sharing, around a quarter of the respondents in all groups have travelled by bicycle more frequently than before. A clear majority of users cycle just as often as before, and very few use this mode of transport less frequently. However, the proportion of those who have not used bicycles since registering to car sharing, at 10 % on average, is significantly higher than for buses and trains. Once again, only the group of respondents who exclusively use the free-floating system shows greater discrepancies in use.

From the point of view of cities and towns that want to use car sharing to reduce the use of motorized private vehicles and strengthen the environmental alliance/ network/ eco-modes, station-based and combined car sharing systems are powerful tools.

4.5 Non-users attitudes on car sharing

Respondents belonging to the non-members group were asked to indicate how likely they would become a car sharing member in the future (Q2b in Appendix 1). Answers from the Italian and Belgian case study are summarised in Table 25. The observed situation in the two countries is a bit different: in Milan and Turin about 20% of respondents is likely to become a car sharing member (24.6% and 19.2% respectively), while in the Flanders region almost 10 percent of the respondents stated they are likely to become a car sharing members. About 40-45% of Milan and Turin respondents stated they will not become a customer while in Flanders this percentage rise up to 78%. Finally, 34.5% of Italian respondents and 13% of Flanders respondents have no clue about future registrations to this kind of services.

Differences between the two areas might be due to the different spatial context (region level vs city level). Thus, digging a little deeper into Flanders region's numbers, it is interesting to notice a significant difference in answers depending on geographical characteristics. In non-urban areas 5% of the respondents is likely to become a member, against 12% in urban areas, which is still low compared to the results in the two Italian cities. Another explanation can be linked to a different perception of the service itself, due to the different offer of car sharing services in the two countries. In particular, free-floating car sharing services offered by big industrial groups have a large visibility in Turin and Milan, that might attract more the attention of non-users.

	Certainly not	Rather not	No clue	Rather yes	Certainly yes
Milan (n = 553)	115 (20.8%)	111 (20.1%)	191 (34.5%)	102 (18.4%)	34 (6.2%)
Turin (n =255)	63 (24.7%)	55 (21.6%)	88 (34.5%)	38 (14.9%)	11 (4.3%)
Flanders region (Panel survey, n=985)	432 (43.9%)	336 (34.1%)	129 (13.1%)	79 (8.0%)	9 (0.9%)

Table 25: Likelihood of becoming a car sharing member

In addition, respondents belonging to the non-members group were asked to rate several features that would entice them in using a car sharing service (Q27b in Appendix 1). The most important and

the least important aspects are described in the following, whereas the full table is reported in Appendix 8.

The two most important aspects raised by respondents from the Italian case study are the assistance in case of breakdowns or damages of the shared cars (64.7% of non-members in both Milan and Turin) and the possibility of free parking in any parking space without limitations (54.3% in Milan and 67.1% in Turin). The latter is also one of the most important argument for Flanders' respondents. However, in a lot of European cities there are already favourable parking regulations for shared cars, thus these answers from non-members might be related to the lack of knowledge about car sharing already granted advantages. Our results therefore can give an indication to car sharing operators on which aspects should be better advertised in a marketing campaign. Similarly, another important aspect for current Italian non-members is the 24/7 telephone assistance of the service provider (53% both in Milan and in Turin), which is also already provided.

On the contrary, half of all respondents living in Flanders indicated the availability of cars whenever the user needs one is the most important reason that could entice them to start sharing. Again, such availability is probably more perceived by non-users when they can see a lot of shared cars around them as it happens in Milan and Turin, although strictly speaking the availability should be assessed in a different way. In any case, building on a widespread and dense offer of shared cars will definitely be one of the biggest challenges of the car sharing sector in the coming years.

Three other important features related to the car sharing offer were encountered among Italian respondents' answers: a larger number of available cars (59.8% in Milan, 60.4% in Turin), a larger extension of the operating area and/or diffusion of the stations (54.7% in Milan, 55.3% in Turin) and a denser network of car sharing stations (or charging stations in case of electric car sharing) would entice non-members to join the service (52.6% in Milan, 50.3% in Turin).

Finally, economical aspects were raised as important incentives to join car sharing, such as discount for short and long renting periods, by 56.4% of non-members in Milan and 51.4% in Turin.

Concerning the least important reasons to become a car sharing member, Italian and Flanders respondents share similar thoughts. The availability of cars equipped with child seats is not considered so important: 50.8% of Milan respondents in does consider it a plus, percentage that rises to 52.6% in Turin and 60.6% in Flanders. Another feature not important for non-members is the possibility of transporting animals (53.4% in Milan, 48.6% in Turin and 65.3% in Flanders) or bicycles (about 58% in both Milan and Turin). These might be very specific needs for a small percentage of the population.

Finally, another less important element that is in common between the two case studies is the design and look of the car (60% in Milan, 60% in Turin and 58% in Flanders). Therefore, people do not expect a shared car to have the latest and most beautiful look, which is to some extent the case for private cars.

4.6 Insights on the optimal mix of car sharing variants to maximise person-level benefits

Results from this chapter have extensively shown that different forms of car sharing have different impacts in terms of car ownership levels, use of different travel means and mobility habits in general. One of the key objectives of the STARS project is to understand how such forms can be jointly exploited to maximise the positive benefits of car sharing systems in urban areas. Based on the results presented so far, the following pages try to give some indications on this point.

4.6.1 Reducing car ownership levels

According to the Frankfurt case study results, free-floating services might be linked to a reduction of car ownership levels of its subscribers of up to 5% (Figure 4, section 4.2.2 and Figure 7, section 4.2.3). Such figures are somewhat lower than older results from other countries that were reported in STARS Deliverable 4.1 (Figure 13), since early adopters probably made mobility choices which are farther away than the average population. Coming back to Frankfurt, assuming that there are about 50,000 subscribers of free-floating services in the city out of 625,000 inhabitants aged 18 or more⁴⁵ (e.g. 1 out of 12.5 adults), this would mean an overall aggregate impact of free-floating services on the car stock of the city of about 0.4%. On the contrary, there is a dramatic reduction of car ownership for roundtrip subscribers (up to 65%), of which a large proportion (about 52%) was explicitly stated being connected with the availability of a roundtrip car sharing system (Figure 4, section 4.2.2 and Figure 7, section 4.2.3). However, only about 3,700 people are actual roundtrip car sharing subscribers in Frankfurt (e.g. 1 out of 169 adults); therefore, the aggregate impact on the car stock of the city is barely more than 0.3%. The customer-numbers are just a very rough estimate, but the trade-off between the two services (impact per customer versus market penetration) is rather clear.

Results from the city of Brussels are quite different concerning free-floating members, however as mentioned above we relied on data gathered outside the consortium so it is hard to find an explanation. The effect of mainly roundtrip services in Flanders is again roughly halving car ownership. Concerning the Italian case study, we only have free-floating services that are much more diffused in the population, since in Milan one out of three dweller aged 18 or more is a subscriber. At the same time, there was a growth rather than a reduction in car ownership of about 2% from one

⁴⁵ https://www.citypopulation.de/en/germany/hessen/hessen/06412000__frankfurt_am_main/

year before subscribing the service to the time of the survey, against a 4% increase of the control group over a comparable time period. It can therefore be said that the net effect is a reduction of 2% in car ownership rates due to car sharing. At the aggregate level, this comes to a limitation of the overall increase of car ownership of a little more than 0.6%. Free-floating services in Milan are less effective in reducing car ownership than free-floating services in Frankfurt, but this could be counterbalanced by a larger impact in terms of market penetration.

The above quantitative results are rough estimates, whose approximation error is probably of the same order of magnitude of these small percentages. As already mentioned, survey respondents tend to use car sharing more than the average, and it is possible that the impact on car ownership is overestimated as well. If such overestimation is affecting in a different way the customers of different forms of car sharing, then the results of the comparison would be biased. However, it seems unquestionable that there is a clear trade-off between the market penetration of a service and its impact in terms of car ownership changes for its customers, such that the aggregate impacts at the level of the overall urban area could be of the same order of magnitude. It is worth mentioning that these results have been obtained both with a longitudinal analysis of car ownership changes when subscribing a service and with a comparison of users versus a control group made by a matched sample of non-users with the same socioeconomic characteristics. In that way, our results are hopefully more reliable than the more naïve approaches based on the direct comparison of users versus non-users, prone to sample selectivity biases.

Given the above framework, the key question for policy-makers is to understand which can be the "optimal mix" in the supply of different systems in order to maximise their benefits in terms of car ownership reduction. Clearly, the ideal situation would be a complete complementarity of the different car sharing schemes, which would happen if these are more appealing to quite different market segments both in terms of individuals and of mobility patterns and therefore there is no competition among them. In such a case, the above estimated aggregated impacts would sum up and the policy indication would be to promote both as much as possible, keeping in mind that a massive number of customers needs to be reached for free-floating to have an appreciable effect, whereas more targeted and "in-depth" actions are appropriate for station-based services, since they can radically change the mobility styles of their customers. On the contrary, in case of substitution and competition across different forms of car sharing, in order to define the most effective policy it would become critical on the one hand to have more precise estimations of the above aggregate impacts, on the other to assess the market increase potential of both services in the urban area under analysis, in terms of number of customers (this analysis in terms of modal shares will later be shown for the Italian case study).

Experimental activities within the STARS project have collected a great deal of empirical evidence that seems indeed to point to a complementary role of different car sharing variants. The analysis of combined car sharing services carried out in Frankfurt shows that their impacts on car ownership are similar to those of station-based services, yet they are more successful in terms of number of customers (although not as much as free-floating services). Additionally, the socioeconomic profiles of users of different services somewhat differ. Albeit it was mentioned that surveying modalities in the Frankfurt case study for customers of different services are making hard to do comparisons, we can rely on STARS Deliverable 4.1 (§1.3.5, §5.4.2) where the socioeconomic profiles of different users had already been extensively analysed in different cities across Europe. There are higher proportions of males and well-off individuals among free-floating customers, which are also two typical characteristics of heavy private car users, while roundtrip based services have older users. Students are another and distinct segment typically using free-floating services.

To sum up, empirical evidence seems to point to a complementary role of different car sharing forms, where the contribution of each kind of service is relatively small but noticeable in reducing car ownership at the aggregate level and probably such contributions are of the same order of magnitude and additive. Thus, a varied offer of car sharing services rather than focusing on just one is probably the best way to maximise impacts on car ownership.

4.6.2 Reducing the use of cars

Beyond car ownership reduction which rests the key objective when promoting car sharing, results from the different case studies can also offer insights on how car sharing can have a positive impact in decreasing the frequency of use of private cars. The logical steps are the same as above and results seem consistent with previous findings.

The Frankfurt case study shows a drastic reduction in the frequency of use of private cars among roundtrip and combined car sharing customers, compared to free-floating ones (1.2 versus 11 days per month according to Figure 19), only marginally eroded by the more frequent use of car sharing by roundtrip customers (1.2 versus 0.8 days per month according to Figure 23). Repeating the analysis of the previous subsection, roughly speaking, the observed order of magnitude of difference in the frequency of use of cars between the two systems should be counterbalanced by the order of magnitude in market penetration levels.

The Italian case study is offering additional insights, given the availability of modal frequency data of both a control group and of longitudinal observations (increase or decrease in the use of cars after joining a car sharing service). On the positive side, car driving frequency of car sharing subscribers in Milan is almost half than that of the control group and car sharing subscribers are more frequently passengers in private cars after starting to use the service (ride sharing beyond car sharing); on the

other hand, the number of car sharing subscribers having decreased the driving frequency of their cars is almost equal to the number of those who acted on the opposite.

A different result was found for Turin, with no statistically significant difference between car sharing subscribers and control group in the frequency of driving but with a reported reduction of car driving after joining to car sharing, while the frequency of being passenger in a car did not change.

As already noted, this is probably due to the different role played by both car and public transport in the two cities in satisfying the mobility needs of individuals. Public transport performances are better in Milan (e.g. a larger underground network) and restrictions to private cars stronger (congestion charge area in the centre). As a result, private car trips might be substituted by car sharing trips more often in Turin, but both users and non-users have a comparable level of use of cars. On the other hand, car sharing subscribers in Milan already minimised the use of cars compared to the control group and therefore they did not reduce any further their car use after joining a car sharing service.

The recommendation stemming from the previous subheading on the complementarity of different services to design the optimal mix of services can therefore be completed by pointing at the synergic role between car sharing and public transport in reducing the use of private cars, which was on the other hand the first point of the STARS policy brief developed in D 7.4.

5 Trip level analysis: mobility scenarios in Turin and Milan

5.1 Definition of mobility scenarios to assess the car sharing potential

As discussed in section 2.1.3, impacts of car sharing will be studied at the individual trip level through the definition of a set of mobility scenarios for the Italian case study, where a representative set of trips was available in the dataset. This set of scenarios was presented in section 3.3.1, where the methodological steps that were taken to come to the later presented results are spelt out.

5.1.1 Business as usual scenario

The Business as Usual (BAU) scenario represents the actual market equilibrium among different travel means. The resulting modal split for the city of Milan and Turin is reported in the below Table 26 and Table 27, respectively.

Travel mode	Current daily tr	Current daily trips (%)				
Walk	245941	(11.5%)				
Bike	109179	(5.1%)				
Car	974248	(45.6%)				
Car sharing	17094	(0.7%)				
РТ	790935	(37.0%)				
тот	2137397	(100.0%)				

Table 26: Modal split of the BAU scenario in Milan

Travel mode	Current daily t	rips (%)
Walk	192856	(15.1%)
Bike	27735	(2.2%)
Car	684452	(53.7%)
Car sharing	4500	(0.4%)
РТ	364532	(28.6%)
тот	1274075	(100.0%)

Table 27: Modal split of the BAU scenario in Turin

5.1.2 All switch scenario

STARS

The all switch scenario maximises the travel demand served by car sharing. The diverted daily trips from different travel means of the current scenario to car sharing and the resulting all switch scenario modal split of the city of Milan are reported in the below Table 28.

Travel mode	Diverted trips to	CS (%)	Daily trips in the "a scenario (%	
Walk	9485	(5.2%)	236456	(11.1%)
Bike	8202	(4.5%)	100977	(4.7%)
Car	89595	(48.7%)	884653	(41.4%)
Car sharing	-	-	201205	(9.4%)
РТ	76829	(41.7%)	714106	(33.4%)
тот	184111	(100.0%)	2137397	(100.0%)

Table 28: Potential trips switching to car sharing and modal split of the "All switch" scenario - Milan

Observing the switch percentages from different travel modes towards car sharing, trips performed with private cars have the highest value (48.7%), followed by public transport trips (41.7%), walk (5.2%) and bike trips (4.5%). These results confirm that trips carried out within an urban area by both car and public transport, have characteristics that can be met by car sharing services. On the contrary, switches from non-motorised modes are lower, since probably trips characteristics such as distance, time and cost, are different (see Figure 36 and Figure 37 in Appendix 5). It is worth recalling that these predictions are obtained from a model calibrated on data coming from the city of Turin, therefore spatial transferability issues of models might affect the outcomes of the Milan case study. (Ortúzar & Willumsen, 2011).

Results coming out from the application of switch models show that, globally, car sharing has the potential to attract 184111 additional trips out of 2137397, which represent the 8.6% of the current daily travel demand estimated from Milan respondents. Considering that, on average, 17094 daily trips in 2018 were performed with shared cars in Milan, the car sharing demand predicted through the application of switch models is 10 times higher in terms of trips and sums up to 201205 trips.

The same approach was used for the data collected in the city of Turin. Results of the application of switch models on the Turin car sharing non-members trips are reported in Table 29.

Travel mode	Diverted trips to	CS (%)	Daily trips in the "al scenario (%	
Walk	11266	(9.7%)	181590	(14.3%)
Bike	2157	(1.9%)	25578	(2.0%)
Car	69442	(59.6%)	615010	(48.3%)
Car sharing	-	-	120924	(9.5%)
РТ	33559	(28.8%)	330973	(26.0%)
тот	116424	(100.0%)	1274075	(100.0%)

Table 29: Potential trips switching to car sharing and modal split of the "All switch" scenario – Turin

Similarly to the findings in Milan, car and public transport trips have higher percentages (59.6% and 28.8% respectively) of switch to car sharing compared to non-motorised modes. In this case the number of private car trips diverted to car sharing is higher compared to the public transport one (it is more than two times the number of trips switching from PT), and very high compared to the other modes.

Comparing the number of the all switch scenario with those of the current scenario described in 5.1.1, the car sharing potential growth in Turin is even more relevant than in Milan (almost 26 times the number of current trips). However the percentage of car sharing trips in the modal split is similar to the one predicted for Milan.

The all switch scenario thus represents the ideal scenario under the current conditions for car sharing operators, because it maximises the switching trips from all transport modes and consequently the usage of the fleet (hopefully increasing the turnover rate of each car) and the profitability of car sharing organisations; on the other hand, this strong increase might be challenging for the operators in terms of fleet management.

Although the all switch scenario might represent the best case for car sharing business, it might not represent the scenario where the car sharing would maximise the overall benefits for transport systems. Comparing the current situation with the all switch scenario in both cities (Table 26 with Table 28 for Milan and Table 27 with Table 29 for Turin), even if most of the potential car sharing daily trips switched from private cars, there are also many diverted trips from non-motorised modes and public transport. As a consequence, all switch scenario might not represent the best situation overall in terms of CO₂ and pollutants emissions (and therefore their monetisation), especially considering how emissions have been evaluated in this study (see par. 3.4.1).

5.1.3 Rupture scenario

The rupture scenario seeks the maximisation of the benefits of car sharing in terms of reduction of the external costs due to the emissions of pollutants and greenhouse gases of the transport sector. For the sake of brevity, only the rupture scenario situation in terms of diverted daily trips to car sharing and the modal split is reported in this paragraph. The cost matrices that allowed to identify the rupture scenario are reported in Appendix 10.

The daily trips modal split of the city of Milan resulting from the rupture scenario, which would occur in case of an increase of both car sharing price and parking cost by 5% and 100% respectively, is reported in Table 30.

Travel mode	Diverted trips to	CS (%)	Daily trips in the "F scenario (%	-
Walk	8321	(4.5%)	237620	(11.1%)
Bike	7735	(4.2%)	101444	(4.7%)
Car	97474	(52.7%)	876774	(41.0%)
Car sharing	-	-	202150	(9.5%)
РТ	71526	(38.7%)	719409	(33.7%)
тот	185056	(100.0%)	2137397	(100.0%)

Table 30: Potential trips switching to car sharing and modal split of the "Rupture" scenario - Milan

The total number of trips diverted to car sharing is slightly higher compared to the all switch scenario: despite switches from walk, bike and public transport are lower in the rupture scenario, trips diverted from private cars rose from 48.7% to 52.7% of the total.

The daily trips modal split of the city of Turin resulting from the rupture scenario, which would occur in case of an increase of parking cost by 100% and no change in car sharing cost, is reported in Table 31.

Travel mode	Diverted trips to CS (%)		Daily trips in the "Rupture" scenario (%)	
Walk	11266	(9.5%)	181590	(14.3%)
Bike	2157	(1.8%)	25578	(2.0%)
Car	71048	(60.2%)	613404	(48.1%)
Car sharing	-	-	122530	(9.6%)
РТ	33559	(28.4%)	330973	(26.0%)
тот	118030	(100.0%)	1274075	(100.0%)

Table 31: Potential trips switching to car sharing and modal split of the "Rupture" scenario - Turin

Since car sharing price for the customer is now unchanged, the total number of daily trips switching towards car sharing is higher than the one forecasted in the all switch scenario (see Table 29). In this case the maximisation of the benefits (costs minimisation) is only due to increased number of diverted private car trips, which are more pollutant (so more costly) than car sharing fleets (see Table 8 and Table 9 in par.3.4.1).

The impacts deriving from the rupture scenario and their comparison with the business as usual scenario (GAP analysis) will be presented in the following chapter 6.

5.1.4 All electric scenario

The "all electric" scenario presents the same modal shares of the rupture scenario presented in the previous section, but assuming that a fully electrified fleets is used. As a result, the same modal splits presented in the previous section would be reached and they are therefore not reported here.

5.1.5 No car sharing scenario

The "no car sharing" scenario studies how the travel demand that is currently served by car sharing services would redistribute, if car sharing ceased its operations. Its quantification is based on a specific question that was asked to car sharing users. The results are reported for the city of Milan and Turin in Table 32 and Table 33 respectively.

If car sharing had not been available	Strongly disagree (1-2)	Neutral (3)	Strongly agree (4-5)
I would have not performed that trip	276 (58.5%)	79 (16.7%)	117 (24.8%)
I would have used a different travel mode	88 (18.6%)	86 (18.2%)	298 (63.1%)
I would have changed my travel schedule	253 (53.6%)	95 (20.1%)	124 (26.3%)
I would have changed trip destination	302 (64.0%)	79 (16.7%)	91 (19.3%)
I would have used car sharing in combination with another transport mode	208 (44.1%)	135 (28.6%)	129 (27.3%)

Table 32: Alternatives to car sharing for the last trip - Milan (n = 472)

If car sharing had not been available	Strongly disagree (1-2)	Neutral (3)	Strongly agree (4-5)
I would have not performed that trip	112 (64.4%)	31 (17.8%)	31 (17.8%)
I would have used a different travel mode	17 (9.8%)	29 (16.7%)	128 (73.6%)
I would have changed my travel schedule	85 (48.9%)	35 (20.1%)	54 (31.0%)
I would have changed trip destination	120 (69.0%)	30 (17.2%)	24 (13.8%)
I would have used car sharing in combination with another transport mode	87 (50.0%)	49 (28.2%)	38 (21.8%)

Table 33: Alternatives to car sharing for the last trip – Turin (n = 174)

The majority of respondents from both cities stated that if car sharing had not been available they would have used a different travel mode (the statement has the majority of positive rates). Those respondents were also asked to rate – in a scale from 1 (very unlikely) to 5 (very likely) – which travel modes they would have used instead of car sharing. Since all travel modes alternatives were evaluated, only the one with the maximum score was considered as the real alternative to CS; if more than one alternative got the same top score, the score was split among the alternatives according to the number of maximum values. In this way, a single answer was assigned to each respondent, therefore obtaining 298 answers in Milan and 128 in Turin. The percentages of switch from car sharing to the other modes thus evaluated for both cities are summarised in Table 34.

Travel mode	Observations (%)						
	Milan (n =	298)	Turin (n =	128)			
Walk	20	20 (6.8%)		(7.9%)			
Bike	21	(7.2%)	12	(9.2%)			
Car as a driver	64	(21.5%)	43	(33.2%)			
Car as passenger	18	(5.9%)	3	(2.1%)			
Тахі	36	(12.0%)	7	(5.5%)			
РТ	139	(46.6%	54	(42.1%)			
тот	298	(100.0%)	128	(100.0%)			

Table 34: Declared alternative modes to substitute the absence of car sharing for the recorded trip –Italian case study

Although the substitution effect of car sharing trips with private car is quite high, it is interesting to observe that the majority of respondents of both cities would have used public transport if car sharing had not been available. It is, however, important to remind that in this study only single trips rather than trip-chain were analysed: the previous results indeed might be biased by the fact that the respondents are moving back from one place previously reached in some way. The travel mode used in the previous trip would influence the alternative travel means available in the investigated trip and therefore the mode choice (e.g. a respondents move from home to work by public transport, and decide to go back home with car sharing for a certain reason; in absence of car sharing that person cannot use its private car, even if she owns one, simply because that car is not available in her workplace).

In addition, when comparing the two cities, more people living in Turin would use a private car and fewer people would use public transport services than in Milan; once again this might be related to different characteristics of the transport systems in the two cities (as recalled in 3.2 and in 4.4.1) and how these differences impact on the final decision of its usage.

The difference in the use of taxi is also quite remarkable between the two cities (12% of Milan respondents would take a taxi if car sharing had not been available against 5.5% in Turin). The corresponding differences in the use of car as passenger is similar but smaller.

Appling the percentage breakdowns observed in the above Table 34 to the daily trips of the current scenario (BAU scenario described in 3.3.1) of the respective city, it was possible to derive the potential modal split in absence of car sharing. Table 35 reports the situation with no car sharing in Milan whereas Table 36 shows the projected split in Turin.

Travel mode	Diverted trips from c (%)	ar sharing	Daily trips in the ' sharing" scenari	
Walk	1165	(6.8%)	247106	(11.6%)
Bike	1223	(7.2%)	110402	(5.2%)
Car	4677	(27.4%)	978925	(45.8%)
Тахі	2055	(12.0%)	2055	(0.1%)
РТ	7974	(46.6%)	798909	(37.4%)
тот	17094	(100.0%)	2137397	(100.0%)

Table 35: Modal split of the "No car sharing scenario" in Milan

Travel mode	Diverted trips from c (%)	ar sharing	Daily trips in the ' sharing" scenari	
Walk	357	(7.9%)	193213	(15.2%)
Bike	413	(9.2%)	28148	(2.2%)
Car	1591	(35.3%)	686043	(53.8%)
Тахі	246	(5.5%)	246	(0.0%)
РТ	1893	(42.1%)	366425	(28.8%)
тот	4500	(100.0%)	1274075	(100.0%)

Table 36: Modal split of the "No car sharing scenario" in Turin

Among the other travel modes, we notice that a very small proportion of trips are assigned to taxi, whereas such mode was not present at all in the previous scenarios. This is due to the methodological difference in deriving the present "no car sharing" scenario compared to the previous ones. More in details, there were no observed trips by taxi in the SP survey that was used to calibrate the switching models that originated the previous scenarios, nor observed trips by taxi in the STARS survey (see in Figure 2). On the other hand, the third to last row of Table 34 shows that some respondents stated that they would use taxi if car sharing were not available. However we believe that such discrepancy across scenarios is negligible, since the number of trips by taxi that appears in the "no car sharing"

scenario is of the same order of magnitude than the approximation errors in our methodology. To sum up, we can disregard the contribution of taxis in meeting the travel demand in all scenarios.

5.2 Insights on the optimal mix of different car sharing variants to maximise trip-level benefits compared to the "no car sharing" scenario

Results from section 4.6 have shown that implementing a variety of car sharing services in urban areas can maximise the aggregate impacts in terms of car ownership and car use reduction, due to the complementarity of different services. Unfortunately, it is not possible to fully replicate such analysis at the trip level since, as discussed in chapter 2, the complete questionnaire that included trip-level questions was administered only to a tiny number of individuals in the Belgian case study, while very limited information on the last trip performed was available from the Frankfurt case study.

Within the latter, it is nevertheless possible to get some insights on the "no car sharing" scenario, by differentiating across car sharing forms. Table 37 below shows the results to the question "What would have you done if no car sharing had been available for this trip". There is a markedly distinct pattern of responses related to free-floating services, where only 2.3% of trips had not been performed. A first interpretation of this finding is related to the fact that there seems not to exist a viable alternative for a sizable proportion of trips performed through roundtrip services. On the other hand, it seems that the implementation of a free-floating car sharing system is marginally contributing to an overall increase of the travel demand, which is surely a desirable effect. Roundtrip and combined car sharing forms might instead contribute to inducing travel demand, while the joint subscription of different services shows an intermediate situation among the two. Consistently with the analytical framework that is carried out in this section, such interpretation considers a short term perspective where car ownership levels are not affected by the lack of availability of car sharing. Indeed, the wording of the question assumed that car sharing was not available for this specific trip, rather than in general. If the latter evenience would occur, it is likely that very low car ownership levels that were observed by roundtrip subscribers would substantially raise in the long run, and they would behave more similarly to free-floating subscribers.

If car sharing had not been available for this trip (Yes answers only)	Round. (n=406)	Comb. (n=308)	Free- floating (n=43)	Round. + comb. (n=91)	Round. + free- floating (n=63)	Comb. + free- floating (n=74)	Round. + comb. + free- floating (n=78)
I would have not	80	53	1	12	4	9	10
performed that trip	(19.7%)	(17.2%)	(2.3%)	(13.2%)	(6.3%)	(12.2%)	(12.8%)
I would have used a different travel mode	199	163	36	56	46	48	51
	(49%)	(52.9%)	(83.7%)	(61.5%)	(73.0%)	(64.9%)	(65.4%)
I would have changed my travel schedule	62	56	2	11	7	10	13
	(15.3%)	(18.2%)	(4.7%)	(12.1%)	(11.1%)	(13.5%)	(16.7%)
I would have changed trip destination	20	6	0	5	1	2	2
	(4.9%)	(1.9%)	(0.0%)	(5.5%)	(1.6%)	(2.7%)	(2.6%)
Other	45	30	4	7	5	5	2
	(11.1%)	(9.7%)	(9.3%)	(7.7%)	(7.9%)	(6.8%)	(2.6%)

 Table 37: Alternatives to car sharing for the last trip – Frankfurt

As already done in section 5.1.5, modal diversion patterns can be studied by looking at the answers to the question "Which transport mode would you have used instead?", that was posed only to those that answered "I would have used a different travel mode". Results are reported in Table 38.

	Round. (n=197)	Comb. (n=162)	Free- floating (n=36)	Round. + comb. (n=55)	Round. + free- floating (n=46)	Comb. + free- floating (n=47)	Round. + comb. + free- floating (n=49)
Walk	2	1	0	0	1	2	0
	(1.0%)	(0.6%)	(0.0%)	(0.0%)	(2.2%)	(4.3%)	(0.0%)
Bike	10	7	3	2	1	3	4
DIRE	(5.1%)	(4.3%)	(8.3%)	(3.6%)	(2.2%)	(6.4%)	(8.2%)
Car as a driver	19	18	11	3	2	3	3
	(9.6%)	(11.1%)	(30.6%)	(5.5%)	(4.3%)	(6.4%)	(6.1%)
Car as passanger	9	12	0	5	1	1	3
Car as passenger	(4.6%)	(7.4%)	(0.0%)	(9.1%)	(2.2%)	(2.1%)	(6.1%)
Тахі	18	18	11	6	11	5	8
	(9.1%)	(11.1%)	(30.6%)	(10.9%)	(23.9%)	(10.6%)	(16.3%)
Public transport	139	106	11	39	30	33	31
Public transport	(70.6%)	(65.4%)	(30.6%)	(70.9%)	(65.2%)	(70.2%)	(63.3%)

Table 38: Declared alternative modes to substitute the absence of car sharing for the recorded trip – Frankfurt, only for those that declared "I would have used a different mode" in Table 37

Here free-floating members' answers are almost equally split among car driver, taxi and public transport, whereas public transport is predominantly chosen by customers of other car sharing services. This is in line with the lower availability of private cars of the latter group. Finally, active means are clearly not competing with any form of car sharing, with the partial exception of bikes versus free-floating services.

Putting together the results of the two above tables is useful to understand the overall impact of different car sharing forms in terms of change in the number of car trips (including car sharing and private car). Car sharing can be considered to increase such number when respondents stated that they would not have made the trip under analysis if car sharing had not existed (one more new trip), or that they would have made it by public transport or through active means (one more diverted trip). On the other hand, the number of car trips can be considered unchanged whenever car sharing would have been substituted by private cars. Concerning the answers reporting a likely change in either the destination or the time of the trip, from a survey it is not possible to understand these changes had been coupled with a modal diversion as well. We can therefore define an optimistic scenario where a modal diversion would have taken place from the private car (if at all), and a pessimistic one where the substituted mode is either public transport or an active one.

The following table shows the relative frequencies of the different situations for the two above scenarios.

	Fraction of trips diverted from private cars	Fraction of additional car trips (newly induced or diverted from public transport, bike and walk)
	Optimistic – Pessimistic assumption	Optimistic – Pessimistic assumption
Roundtrip (n=361)	35% - 13%	64% - 87%
Combined (n=278)	40% - 17%	60% - 82%
Free-floating (n=394)	62% - 56%	38% - 44%
Comb. + Round. (n=84)	36% - 17%	63% - 82%
Round. + free-floating (n=58)	38% - 24%	62% - 76%
Comb. + free-floating (n=69)	30% - 13%	68% - 86%
Round. + comb. + free- floating (n=76)	38% - 18%	59% - 79%

 Table 39: Estimation of the fractions of trips diverted from private cars and additional car trips under optimistic or pessimistic assumptions

It can be seen that free-floating contributed in increasing the number of car trips in about 38% to 44% of cases, whereas such figures increase to the 59% to 87% of cases for the other car sharing forms. This is due to the fact that the larger substitution rate of free-floating services versus environmentally benign modes, which is a negative effect, is more than counterbalanced by a much small number of induced car sharing trips.

Coming to the optimal mix of different car sharing services, it becomes apparent that from the triplevel viewpoint the design should be targeted at avoiding stimulating the demand for trips that could be avoided or diverting trips from public transport and active means. Decision-makers can more directly play a role in the latter aspect, which according to the above results becomes critical especially in the presence of free-floating services. Such remark is not therefore changing the indications coming out from the person-level analysis of section 4.6.

6 Impacts of the rupture scenario and gap analysis with the business as usual scenario

As already mentioned in the methodological section, the following impacts exclusively refer to the trip-level mobility scenarios of free-floating services for the Italian case study, thus not considering the long-term benefits e.g. in terms of parking demand due to changes in car ownership levels that are due to car sharing systems.

6.1 Impact on greenhouse emissions

STARS

Free-floating car sharing impacts on greenhouse emissions were evaluated for both rupture scenario (see Table 30 in par. 5.1.3) and business as usual scenario (Table 26 in par. 5.1.1), therefore only the difference between the two scenarios is reported in this section.

	Delta = Rupture – BAU scenario								
Mode	Delta daily trips	Delta daily trip lengths [km]	Delta CO ₂ emissions [t]	Delta CO₂ costs [€]					
Walk	-8321	-34391	-	-					
Bike	-7735	-18792	-	-					
Car	-97474	-848487	-130.16	-13016					
Car sharing	185056	1528587	137.04	13704					
Public transport	-71526	-745580	-	-					
Total	0	-118663	+6.88	+688					
Variation from BAU [%]	-	-0.4%	+0.2%	+0.2%					

Table 40 below shows the case of the city of Milan.

Table 40: free-floating car sharing impact on CO₂ emission in Milan

The first column reports the transport modes, while the second and third columns report the difference between rupture and BAU scenarios in terms of daily trips and daily trips distances respectively. It is worth noting that the total number of trips is unchanged (the delta is null since switch models used to create the rupture scenario assume an overall travel demand invariance, as explained in par. 5.1) while the total trip length is not; in this case the difference is negative, meaning that more kilometres were ridden in the business as usual scenario. An explanation to this value can be done by considering trips diverted from public transport: the path connecting origin and destination might be, in many cases, longer than the one chosen when driving a shared car.

This motivation is also supported by the values reported in the fourth column, in fact the total reduction of the kilometres travelled does not correspond to a reduction of the overall CO_2 emissions. As explained in par. 3.4.1, the reduction of trips performed by public transport (and consequently their distances) does not produce positive effects in terms of CO_2 and pollutants emissions, since public transport offer is supposed invariant as well.

As anticipated, values in the fourth column show an increase in the total amount of CO₂ emissions (the total is positive), which can be quantified in about 7 tons every day. Given the approximation of the analytical methods used, it can therefore be said that no statistically significant difference was found between the two scenarios. In fact, the estimated daily CO₂ production in BAU scenario is about 3400 tons (Table 66 in Appendix 11), therefore the increase foreseen in the rupture scenario is about 0.2% (as reported in the last row of Table 40). In any case, the reduction of CO₂ emissions produced by the trip diversion from private car to car sharing is not completely eroded by the increase of CO₂ emissions produced by car sharing trips which were previously performed by walk, bike and public transport. The estimated daily cost for the society in the rupture scenario, obtained by multiplying the amount of CO₂ emissions by the respective cost coefficient (European Commission, 2019) reported in par. 3.4.2, is $688 \in$ higher than the cost of the current scenario, or 0.2% due to the proportionality of the cost coefficient.

Similarly to what has been done for the city of Milan, the gap analysis between rupture (Table 31) and BAU (Table 27) scenarios evaluated for the city of Turin is reported in Table 41 below.

	Delta = Rupture – BAU scenario								
Mode	Delta daily trips	Delta daily trip lengths [km]	Delta CO ₂ emissions [t]	Delta CO₂ costs [€]					
Walk	-11266	-25758	-	-					
Bike	-2157	-7789	-	-					
Car	-71048	-474980	-71.77	-7177					
Car sharing	118030	911251	82.08	8208					
Public transport	-33559	-425982	-	-					
Total	0	-23259	10.31	1031					
Variation from BAU [%]	-	-0.1%	+0.5%	+0.5%					

Table 41: free-floating car sharing impact on CO_2 emission in Turin

Once again the difference of daily trips in unchanged while total distances are negative, meaning that the sum of trips length was bigger in the business as usual scenario. Results in Turin, are similar to Milan: the use of car sharing predicted by switch models will increase the estimated daily amount

of CO_2 emissions, which is about 1985 tons per day in the BAU (Table 71 in Appendix 11), by an overall negligible amount of about 10 tons (+0.51% as reported in the last row of Table 41).

In both cities, the predicted increasing use of car sharing as a mobility alternative to the current transport modes would produce negligible effects in terms of CO₂ emissions. However, it is worth stressing that the rupture scenario has been defined (see par. 5.1.3) as the scenario that maximises the overall benefits of car sharing, reducing transport systems externalities and therefore the cost for the society. The externalities evaluation takes into account different kinds of emissions and their respective costs, therefore the scenario which maximises the benefits related to the reduction of a specific pollutant (or greenhouse gas) might not represent the best in the overall balance. Concerning CO₂ emissions for example, Figure 42 (which refers to the city of Milan) and Figure 54 (which refers to the city of Turin) reported in Appendix 9 show many scenarios (marked in green) where car sharing has a more positive effects in terms of reduction of greenhouse gas emissions and therefore a saving for the society. In addition, also during the evaluation of the "no car sharing" scenario (see Table 70 and Table 75 in Appendix 11) lower levels of CO₂ emissions were estimated in both cities compared to the BAU scenario. However, those scenarios were producing less positive effects in terms of emissions of other pollutants, which were globally producing an increase in the costs for society (+122€ and +10€ every day for the city of Milan and Turin, respectively).

6.2 Impact on the emissions of pollutants

The same method applied to evaluate the impact of car sharing on CO_2 emissions in the rupture scenario, in the BAU scenario and their difference (gap analysis) was used to evaluate the impacts on the emissions of the main pollutants resulting from the combustion, namely NMVOC, NO_X, NH₃ and PM_{2.5} (as described in par. 3.4.1).

The case of the city of Milan is presented in the following Table 42 and Table 43.

The first three columns of both tables report the same information of Table 40 for the sake of clarity. In the four last columns of Table 42 the differences (in kilograms) in the emissions of each pollutant between the rupture and the current scenario (BAU) are reported. The four last columns of Table 43 report those differences in economic terms (\in); the economic evaluation was carried out by considering the differences in emission quantities of Table 42 multiplied by the respective cost coefficients reported in par. 3.4.2. The variation of each pollutant compared to the BAU scenario is reported (in percentage) in the last row of both tables, while the absolute values of each pollutant emission and its monetisation can be retrieved in Table 68 of Appendix 11.

	Delta = Rupture – BAU scenario											
Mode	Delta daily trips	Delta daily trip lengths [km]	Delta NMVOC emissions [kg]	Delta NO _x emissions [kg]	Delta NH₃ emissions [kg]	Delta PM _{2.5} emissions [kg]						
Walk	-8321	-34391	-	-	-	-						
Bike	-7735	-18792	-	-	-	-						
Car	-97474	-848487	-184.0	-405.6	-16.9	-8.1						
Car sharing	185056	1528587	63.4	69.3	14.5	2.1						
Public transport	-71526	-745580	-	-	-	-						
Total	0	-118663	-120.6	-336.3	-2.4	-6						
Variation from BAU [%]	-	-0.4%	-2.5%	-3.1%	-0.5%	-2.8%						

Table 42: Car sharing impact on pollutants emission in Milan

	Delta = Rupture – BAU scenario									
Mode	Delta daily trips	Delta daily trip lengths [km]	Delta NMVOC costs [€]	Delta NO _x costs [€]	Delta NH₃ costs [€]	Delta PM _{2.5} costs [€]	Total costs [€]			
Walk	-8321	-34391	-	-	-	-	-			
Bike	-7735	-18792	-	-	-	-	-			
Car	-97474	-848487	-202	-10481	-365	-1071	-12119			
Car sharing	185056	1528587	70	1938	314	283	2605			
Public transport	-71526	-745580	-	-	-	-	-			
Total	0	-118663	-132	-8543	-51	-788	-9514			
Variation from BAU [%]	-	-0.4%	-2.5%	-3.1%	-0.5%	-2.8%	-1.4%			

Table 43: Economic evaluation of car sharing impact on pollutants emission in Milan

As already remarked, walk, bike and public transport rows are empty, since the reduction in the use of these modes (the number and the length of these trips) and the consequent theoretical reduction in terms of emissions (valid only for PT trips) cannot be quantified (see par. 3.4.1).

Differently from the above presented results about the impact of car sharing on CO₂ emissions, the rupture scenario's emissions are lower than the emissions of the BAU scenario for every pollutant taken into account in this study (the row "Total" of Table 42 has negative values only), although for a negligible amount. In fact, the variation in the quantity of each pollutant ranges between 0.4%-3.1% compared to the estimated emission of the BAU scenario. This means that the increase in the

emissions due to the increased use of shared cars (see the row related to the mode "car sharing") is less than the reduction of current emissions generated by private cars (row "car"), even considering those trips diverted to car sharing that are currently made with more sustainable modes. This is mainly due to the difference in pollutants' emissions of car sharing cars, that use more efficient engines compared to the private cars (see Table 8 and Table 9 in par. 3.4.1). The reduction in the pollutants' emissions generate a positive effect in terms of cost internalisation, thus the costs reported in the last row of Table 43 becomes savings for the city of Milan.

The car sharing rupture scenario in the city of Milan would therefore generate an increase of CO_2 emissions along with a reduction of all main pollutants, that can be evaluated in economic terms as a saving for the city of Milan of about 8827€ every day (which is obtained by summing up the savings produced by the reduction of pollutants' emissions and the cost deriving from the increase in CO_2 emissions).

The same approach was used to evaluate the gap between the rupture and the BAU scenario in the city of Turin. The difference in the pollutants' production is quantified in kilograms in Table 44, while the economic evaluation is presented in the following Table 45.

	Delta = Rupture – BAU scenario										
Mode	Delta daily trips	Delta daily trip lengths [km]	Delta NMVOC emissions [kg]	Delta NO _x emissions [kg]	Delta NH₃ emissions [kg]	Delta PM _{2.5} emissions [kg]					
Walk	-11266	-25758	-	-	-	-					
Bike	-2157	-7789	-	-	-	-					
Car	-71048	-474980	-84.3	-207.3	-8.91	-4.3					
Car sharing	118030	911251	38.8	42.4	8.90	1.3					
Public transport	-33559	-425982	-	-	-	-					
Total	0	-23259	-45.4	-164.9	-0.01	-3					
Variation from BAU [%]	-	-0.1%	-2.1%	-2.8%	-0%	-2.5%					

Table 44: Car sharing impact on pollutants emission in Turin

	Delta = Rupture – BAU scenario										
Mode	Delta daily trips	Delta daily trip lengths [km]	Delta NMVOC costs [€]	Delta NO _x costs [€]	Delta NH₃ costs [€]	Delta PM _{2.5} costs [€]	Total costs [€]				
Walk	-11266	-25758	-	-	-	-	-				
Bike	-2157	-7789	-	-	-	-	-				
Car	-71048	-474980	-93	-5303	-192	-567	-6155				
Car sharing	118030	911251	43	1114	192	168	1517				
Public transport	-33559	-425982	-	-	-	-	-				
Total	0	-23259	-50	-4189	0	-399	-4638				
Variation from BAU [%]	-	-0.1%	-2.1%	-2.8%	-0%	-2.5%	-1.3%				

Table 45: Economic evaluation of car sharing impact on pollutants emission in Turin

Similarly to what has been found in the city of Milan, in the city of Turin the emissions of every considered pollutant are lower in the rupture scenario than in the BAU scenario. Differences here are lower in absolute terms, since the estimated overall number of daily trips within the city and of those switching to car sharing is lower as well. The car sharing rupture scenario in the city of Turin would therefore generate an increase of CO₂ emissions along with a reduction of all main pollutants, which are however negligible compared to the amount currently produced (variations range between 0% and 2.8% of the BAU emissions, as showed in the last row of Table 41, Table 44 and Table 45).

Anyway, this can be evaluated in economic terms as a saving for the city of about $3607 \in$ every day, which is obtained by summing up the savings produced by the reduction of pollutants' emissions and the cost deriving from the increase in CO₂ emissions (see also Table 73 in Appendix 11).

Finally, it is worth observing that car sharing impacts on emissions of both, greenhouse gas and air pollutants, would be even more positive if current fleets would be substituted with electric ones. Given the assumptions of the analytical methods used, electric vehicles would not produce exhaust emissions, therefore the increasing use of car sharing deriving by the switch from other modes would not correspond to an increase in the emissions (all "car sharing" rows in tables of section 6.1 and 6.2 would be null). Daily economic savings for the society deriving from the reduction of both CO₂ and air pollutants emissions associated with the use of full-electric fleets of car sharing vehicles are summarised in Table 46 below. For more information about absolute values of each pollutant and total costs, please refer to Table 69 and Table 74 in Appendix 11).

City	Scenarios	Delta CO₂ cost [€]	Delta Pollutants cost [€]	Delta total costs [€]
Milan	Rupture scenario	+688	-9514	-8827
	All electric rupture scenario	-13704	-12119	-25823
	All electric scenario variation from BAU [%]	-3.9%	-3.9%	-3.9%
Turin	Rupture scenario	+1031	-4638	-3607
	All electric rupture scenario	-7177	-6155	-13332
	All electric scenario variation from BAU [%]	-3.5%	-3.5%	-3.5%

Table 46: Daily economic savings for the cities of Milan and Turin deriving from the use of fullelectric car sharing fleets

As anticipated, the use of full-electric fleets will reduce the emissions of greenhouse gas and air pollutants compared to the rupture scenario; the daily savings for the city of Milan are quantified in about 26000€ while for the city of Turin in about 13000€. The savings produced by electric fleets are still neglect table compared to the overall costs deriving from current mobility scenarios (the variation is 3.9% in Milan and 3.5% in Turin).

6.3 Impact on public spaces

Changes in car ownership have the strongest impact in the use of public space, with specific reference to parking demand, and they were already evaluated for the Italian case study in par. 4.2. Here the focus is rather on a trip level analysis, in order to understand how the using car sharing rather than private cars for the set of diverted trips will impact on the spatial patterns of parking demand.

Daily parking events measurement was therefore used to quantify car sharing impacts on public spaces: the two cities were divided in zones according to the zoning presented in par. 3.4.3 in order to observe where registered parking events occurred and so where the impact is a positive, negative or neutral. Neutral impacts were not analysed in detail (so they are not presented here) since they always occur when private cars have been parked in garages, thus not producing a tangible impact on public spaces (refers to par. 3.4.3 for more information). Therefore positive and negative impacts were evaluated for each zone, by distinguishing on-street parking events and parking events indedicated parking slots.

Tables reporting positive and negative impacts on both on-street and on-surface dedicated parking areas are not reported here for the sake of brevity. Please refer to Appendix 12 for the full tables,

while here the same kind of information will be presented through maps elaborated using a GIS software.

The graphic representation of the zoning and of the parking events impacts of car sharing in Milan is reported in Figure 29 below. For each zone, identified through a thick red line, up to four bars are displayed: the red bars represent the negative impact on street while the green ones the positive impact on street; orange and light green bars represent negative and positive impacts on dedicated parking areas, respectively.

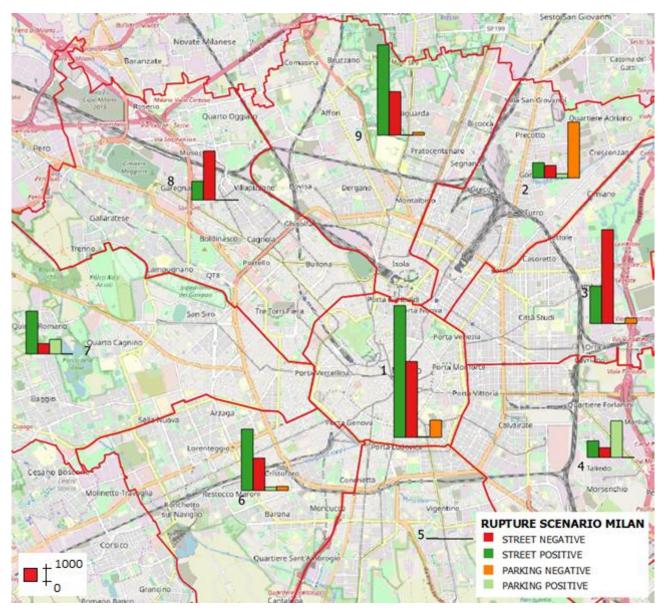


Figure 29: Daily parking events evaluation in the city of Milan (Rupture-BAU scenario)

Negative and positive impacts for both kinds of public space are separately presented in the maps before being algebraically summated, since they might have a different meaning. On the one hand, a positive impact given by one less parking event represents one less vehicle that is actively looking

for a parking spot in the area. On the other, a negative impact could represent longer occupancy times of already occupied parking spots. It is therefore clear that the two are not always compensating each other on a practical viewpoint.

Observing the central area of Figure 29, which coincides with the Milan city centre (zone 1), it can be noted that there are positive and negative impacts of parking events on street, however the green bar is higher than the red one (so an higher absolute value). Concerning parking events in dedicated parking, only negative impacts were estimated. Therefore considering the algebraic sum of the contributes car sharing might produce a positive impact on daily central areas parking events in the rupture scenario. On the contrary, higher negative impacts on both street and dedicated parking events might be encountered in more peripheral areas, for example in zones closer to the upper right corner (zones 2, 3 and 8).

Clearly the results presented here give an initial and partial evaluation of the impacts on public spaces due on one hand to the limited number of trips recorded through the survey and, on the other hand, to the kind of trip and the type of parking used for that trip.

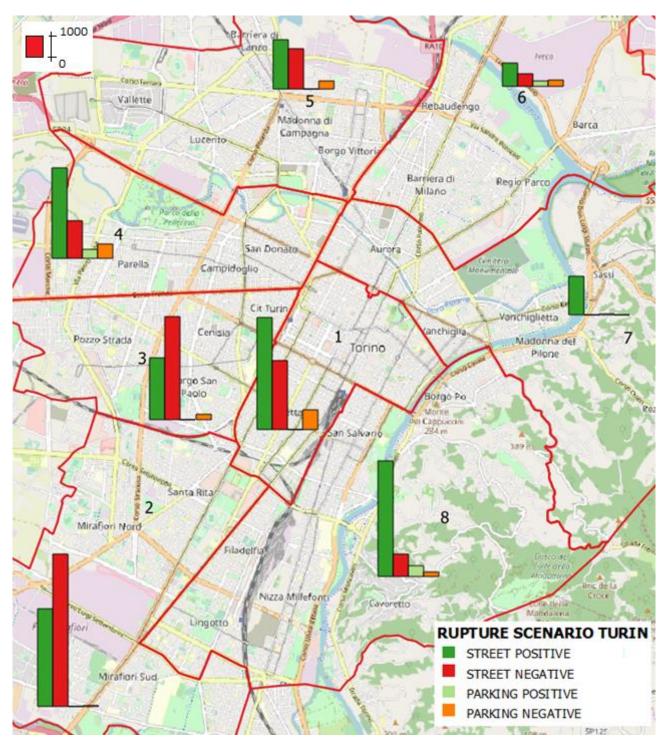
Beyond the above introduced maps, the difference between positive and negative impacts on daily parking events was computed according to the type of parking (on street and in dedicated parking areas). The results are summarised in the following Table 47.

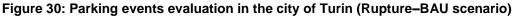
Zone	Street	Parking
1	5187	-1489
2	300	-4790
3	-5194	-566
4	590	3396
5	56	42
6	2685	-46
7	2962	1372
8	-2774	-8
9	4290	-257
Total	8102	-2346

Table 47: CS impacts on daily parking events in street and in dedicated on-surface parking spaces of Milan

Information reported in Table 47 shows that some zones have a positive balance in terms of daily parking events in both street and parking areas (e.g. zone 4 and zone 7); in others the balance is negative (e.g. zone 3) or mixed (e.g. zone 1). However looking at the overall balance of the city (row

"Total") car sharing might produce a positive effect on street spaces, quantifiable in 8160 daily parking events. On the other hand, CS might produce negative effects on dedicated parking spaces, quantifiable in 2346 daily parking events. The total balance of public surfaces is still positive (8160-2346).


Similarly, the graphic representation of the zoning and of the daily parking events impacts of car sharing in Turin is reported in Figure 30 below, where each zone is delimited with a thick red line. Absolute values are reported in Table 77, Appendix 10.


It is interesting to observe that the city centre area (zone 1), where is located one of the two major railway stations of the city, car sharing might produce a positive effect on street parking events. This is related to the fact that in many of those car trips respondents reported to park in that area on the street.

In line with results obtained for the city of Milan, higher on-street negative impacts were encountered in peripheral areas, especially in the south-west area of the city (zones 2 and 3).

Finally, information reported in Table 48 shows that in the overall balance of the city (row "Total"), car sharing might produce a positive effect on street spaces, quantifiable in 7246 daily parking events. On the other hand, CS might produce negative effects on dedicated parking spaces, quantifiable in 1679 daily parking events. The total balance of public surfaces is still positive (7246-1679).

Zone	Street	Parking
1	2058	-974
2	-2629	-52
3	-1988	-273
4	2552	-283
5	424	-403
6	483	-42
7	1888	52
8	4458	296
Total	7246	-1679

Table 48: CS impacts on parking events in streets and in dedicated on-surface parking spaces ofTurin

It is worth stressing that results obtained for the two cities of the Italian case study are based only on the last trip performed by respondents, so areas with no impact might derive to the combination of few trips staring/ending there and the low switching probability towards car sharing of those trips. Therefore it is not possible to state that car sharing has no impact in those zones or that it might be used less than in other areas of the city, on the basis of the outcomes presented in this section. In other words, car sharing scenarios results are not fully reliable at the more disaggregated zonal level, whereas the more aggregated figures that were presented here can represent a useful indication for policy makers.

7 Enlarging the view beyond the STARS case studies: feedback from uptake cities

As already mentioned in section 2.4 ICLEI formed a small group of the Uptake city to collect recommendations about the project results from the city representatives interested in implementing car sharing in their cities. Two workshops were organised to communicate results and progress made in the project but also for the Uptake cities to be critical and ask questions directly to presenters. After each workshop, a questionnaire was sent to the Uptake cities representatives to collect feedback. We have collected five anonymous responses from the Uptake cities (results are reported in Appendix 3).

The feedback received was generally positive and constructive. Overall, only the satisfaction of presented information was a bit lower that the maximum score. One of the reasons could be that the first webinar was also the introduction to the project and main overview of the results available at the time of the webinar.

The same procedure was repeated after the second webinar, however the questions had been slightly different. Again, we have collected five anonymous responses (see Appendix 3).

Similarly, overall satisfaction was high, and the amount of presented information seems to be received slightly better.

To summarise the overall feedback received from the Uptake cities, this project helped them to understand what kind of mobility options are available in terms of shared economy approach. We have in general received more detailed feedback about possible implementation from advanced cities, i.e. cities that already have one or more car sharing services or have already implemented a SUMP. From cities that are not as advanced, we have received a general feedback that they have understood more about positive and negative impacts of different car sharing variants, as well as what conditions they still have to achieve in order to introduce the optimal car sharing services in their city. For example, the city of Varna stated in the final document that based on the experience from the STARS project, they are considering implementing a bike sharing scheme that might grow into car sharing scheme, providing a good feedback from the users. Moreover, in Varna they now recognise the possible implications of car sharing to overall urban mobility and they state that it must be included in the SUMP they are developing. As the need for the future, Uptake cities generally agree that specific help in further knowledge exchange and training activities would be beneficial in deciding whether to implement car sharing and what type of service to consider, according to their local specific context.

Conclusions

STARS

Person level analyses carried out on data gathered through the STARS mobility survey show that car sharing members of different European countries have some similar characteristics. Some findings are in line with previous STARS results and characteristics already reported in the literature, such as the average age of car sharing members, the higher proportion of males among customers, a higher education level compared to the general population and higher incomes.

Car sharing users are more inclined to be multimodal, usually they own public transport season tickets, use PT more frequently and are more willing to share bikes (there is a high percentage of car sharers within the Italian and the Belgian case studies having also a bike sharing membership). In addition, CS members live in household where other people are registered to a car sharing service (about 40% of respondents of both cities, while this percentage falls to 10% in non-members households), confirming the importance of subjective norms in the attitudes towards car sharing (Bergstad et al., 2018).

Outcomes from the Italian case study however showed that car sharers' travel behaviour might be related to the variety and the reliability of alternative transport options. In fact, car sharers of the two cities behave differently: in Turin the differences encountered among car sharers and the non-members' control group were not significant. Therefore we can conclude that car sharing alone is not sufficient to trigger changes in mobility behaviour, it needs to be integrated into a broad transport system that can substitute the need for a private car in several ways. City administrations need to carefully look at this aspect.

Outcomes from Belgian and Frankfurt case studies, which had a deeper look at differences among users of different forms of car sharing, showed that users of roundtrip station-based car sharing on average use public transport solutions (bus, tram, metro and train) more frequently after their subscription with car sharing. In Frankfurt users of combined services have very similar behaviour to roundtrip user group. Among free-floating car sharers, on the other hand, more respondents are using these public modes less often than before their subscription.

Interestingly the variant-specific differences, which were already identified for Frankfurt inner-city residential areas in (Bergstad et al., 2018), can also be found in the city as a whole. This might mean that dense bus and train services provided in the inner-city and the short travelled distances there are not as decisive as expected.

Concerning car ownership levels, results from all case studies showed that car sharing is adopted by individuals living in households with a lower number of private cars compared to non-members and, as showed in the Italian case study, also compared to non-members with the same socioeconomic

characterisation (control group). The use of a control group, rather than the simple comparison of members versus non-members, allows us to link more directly the low car ownership level with the car sharing membership.

Nevertheless, differences in car ownership were encountered when considering users registered for different car sharing variants. In the Brussels Capital Region, roundtrip station-based car sharing users own five times fewer cars than free-floating ones. Together with the results of the Frankfurt case study and to the previous STARS Deliverable 4.2 (Nehrke et al., 2018), this findings suggest that users of free-floating car sharing do not necessarily see the service as a replacement for their own car, but rather as a supplement.

Asking a longitudinal question about car ownership (car ownership levels in three different time points) allowed the STARS consortium to understand when changing in car ownership occurred (if any): in both Belgian and Frankfurt case studies the number of owned cars dropped some months before car sharing users subscribe to a service. It is not possible to conclude that the car sharing membership is the unique trigger to scrap a private car, or the enrolment to a car sharing service is a consequence of an occasional need of a car. However, even if car sharing is not the leading cause of car ownership reduction, it is undoubtedly one of the solutions making possible to live with fewer cars for citizens.

Differently from the other case studies, in Italy, where free-floating services represent over 90% of the car sharing market, car sharing members interviewed did not decrease the number of owned cars after subscribing to the service but slightly increase it. It is however important to frame it in the car ownership trends of the whole population and to observe that the growth rate of cars owned by car sharing members is smaller than that of non-members. A positive impact on car ownership level was therefore registered also in this case study. Thus, car sharing might have a higher impact on postponing the purchase of additional cars. This assumption is also supported by the hypothetical control question "how many cars would be in your household if there were no car sharing", that revealed the prevention in the purchase of new cars to a considerable extent.

Even if in many analyses carried out in this document, free-floating car sharing has fewer positive social impacts for each subscriber than other forms of car sharing, it is very important to remark that free-floating services on the other hand attract much wider and new target groups compared to station-based and peer-to-peer car sharing services, the latter being still a niche phenomenon. Free-floating organisations also bring a slightly different offer of car sharing to cities, which is tailored for other types of journeys (e.g. one-way trips) and therefore not in competition with roundtrip services. Since the number of people using shared cars is still quite small, free-floating operators can be an

important way to enlarge the emerging market of shared mobility more rapidly. In this perspective, free-floating car sharing can be considered as a possible entry point to the car sharing world.

In addition, we showed that there is a clear trade-off between the market penetration of a service and its impacts, especially in terms of car ownership changes for its customers. Thus, the aggregate impacts of free floating at the level of the overall urban area could be of the same order of magnitude of more effective car sharing services, which are more positively impacting but on a very small segment of the city population.

In order to maximise positive impacts (i.e. lower private car ownership and higher use of bicycle and public transport), the Frankfurt case study and the German case study reported in STARS Deliverable 4.1 (Bergstad et al., 2018) showed that members of combined car sharing systems and people using both station-based and free-floating systems have a far better impact on car ownership and in their mobility behaviours than respondents who only use a free-floating service. Thus, free-floating car sharing users should be seduced to broaden their view and start using station-based services after that they become familiar with the concept. Gradually this should impact their mobility habits in a positive way. In order to achieve this goal, policy-makers can ask free-floating car sharing services or to cooperate with station-based or peer-to-peer operators.

The trip level analysis carried out on data gathered in Italy (where extensive information about the last trip performed by respondents was collected) allowed to determine the maximum potential travel demand that can be attracted by free-floating car sharing. According to the models' results, the potential car sharing demand might increase from about 1% of the daily travel demand currently served in Milan and Turin, up to about 10% estimated in the rupture scenario.

The rupture scenario, defined as the scenario that will maximise the car sharing benefits for both the industrial and the transport sectors, will increase the portion of travel demand satisfied by car sharing based on both socioeconomic and trip characteristics of the current non-users. On one hand, this would produce the increase of car sharing operators' revenues and therefore benefits for the industrial sector. On the other hand, the rupture scenario would lead to a reduction of greenhouse gas and air pollution produced by the transport sector in the cities. This reduction implies therefore a benefit in terms of transport costs for society. However, it is worth stressing that these reductions are quite small compared to the quantities of emissions currently produced, clearly due to the phenomenon scale (even with the predicted growth, car sharing always remain a niche market) and to the fact that free-floating car sharing would attract trips also from public transport and active modes. The reduction in emissions is almost always below 3% for the considered pollutants, which

corresponds to a saving of 1.4-1.6% in terms of related social costs. In case of fully electric car sharing fleets, the latter saving could reach 3.5%.

Finally, this study gives a preliminary evaluations of the impacts on parking events occurring in dedicated parking spaces and along the city streets. The method used allowed to distinguish dedicated parking areas from on-street parking, showing for the latter positive impacts due to the switch for specific trips to car sharing. It is worth stressing that impacts evaluated are not directly quantifiable in parking lots saved, but represent a parking unit in time. In general, more positive effects were observed in central area of the city, probably due to the fact that many car trips substituted by car sharing finish there. Therefore the problem of public spaces occupation seems moved in peripheral areas, were private cars might remain parked for more time due to the car sharing usage. On the base of these results, it is hard to derive strong conclusions about the impacts on parking spaces.

Bibliography

- Agenzia per la Mobilità Metropolitana e Regionale. (2015). *IMQ 2013 Indagine sulla Mobilità delle Persone e sulla Qualità dei Trasporti.* Retrieved from http://mtm.torino.it/it/dati-statistiche/indagine-imq-2013/pdf-1/IMQ2013_RapportoSintesi.pdf
- Agrawal, A. W., & Schimek, P. (2007). Extent and correlates of walking in the USA. *Transportation Research Part D: Transport and Environment*, *12*(8), 548–563. https://doi.org/10.1016/j.trd.2007.07.005
- Becker, H., Ciari, F., & Axhausen, K. W. (2017). Comparing car-sharing schemes in Switzerland: User groups and usage patterns. *Transportation Research Part A: Policy and Practice*, *97*, 17–29. https://doi.org/10.1016/j.tra.2017.01.004
- Belter, T., Schreiner, M., Blümel, H., Fiechtner, M., Nowack, F. U., Willing, J.-N., ... Schmöller, S. (2015). *Carsharing und Elektromobilität. Ein Praxisleitfaden für Kommunen (WiMobil)*. Retrieved from www.wpgh.de
- Bergstad, C., Ramos, E., Chicco, A., Diana, M., Beccaria, S., Melis, M., ... Loose, W. (2018). STARS Deliverable 4.1 - The influence of socioeconomic factors in the diffusion of car sharing. Retrieved from http://stars-h2020.eu/wp-content/uploads/2019/06/STARS-D4.1.pdf
- Bethlehem, J. (2010). Selection bias in web surveys. *International Statistical Review*, 78(2), 161–188. https://doi.org/10.1111/j.1751-5823.2010.00112.x
- Bierlaire, M. (1998). Discrete choice models. In M. Labbé, G. Laporte, K. Tanczos, & P. Toint (Eds.), Operations Research and Decision Aid Methodologies in Traffic and Transportation Management. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 166 (pp. 203– 226). https://doi.org/10.1007/978-3-662-03514-6_9
- BMVI. (2019). *Mobilität in Deutschland Methodenbericht*. Retrieved from https://www.bmvi.de/SharedDocs/DE/Artikel/G/mobilitaet-in-deutschland.html
- Ceccato, R., & Diana, M. (2018). Substitution and complementarity patterns between traditional transport means and car sharing: a person and trip level analysis. *Transportation*, (0123456789), 1–18. https://doi.org/10.1007/s11116-018-9901-8
- Chicco, A., Diana, M., Rodenbach, J., Mathijs, J., & Nehrke, G. (2018). *STARS Deliverable 2.3 The growth of car sharing in a business as usual scenario*. Retrieved from http://stars-h2020.eu/wp-content/uploads/2019/06/STARS-D2.3.pdf
- Ciuffini, M., Gentili, V., Milioni, D., Refrigeri, L., Rossi, G., Soprano, L., & Squitieri, F. (2018). *2° Rapporto Nazionale sulla Sharing Mobility*.
- Ciuffini, M., Orsini, R., Asperti, S., Gentili, V., Grossi, D., Milioni, D., ... Specchia, L. (2019). *3° Rapporto Nazionale sulla Sharing Mobility*. Retrieved from http://osservatoriosharingmobility.it/wpcontent/uploads/2019/07/come-sta-la-sharing-mobility_III-Rapporto-SM_13-e-FRONT.pdf
- Clewlow, R. R. (2016). Carsharing and sustainable travel behavior: Results from the San Francisco Bay Area. *Transport Policy*, *51*(2016), 158–164. https://doi.org/10.1016/j.tranpol.2016.01.013
- Cornick, P., Cant, J., Byron, C., Templeton, I., & Hurn, J. (2019). *National travel survey*. https://doi.org/10.1016/0160-7383(78)90383-3

- Efthymiou, D., & Antoniou, C. (2016). Modeling the propensity to join carsharing using hybrid choice models and mixed survey data. *Transport Policy*, *51*, 143–149. https://doi.org/10.1016/j.tranpol.2016.07.001
- European Commission. (2019). *Handbook on the external costs of transport: Version 2019*. https://doi.org/10.2832/27212
- Follmer, R., Gruschwitz, D., & Hölscher, J. (2015). *Carsharing aus Sicht der Nutzer. Angebotswahrnehmung und -nutzung*.
- Giesel, F., & Nobis, C. (2016). The Impact of Carsharing on Car Ownership in German Cities. *Transportation Research Procedia*, *19*(June), 215–224. https://doi.org/10.1016/j.trpro.2016.12.082
- Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2007). Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. *Political Analysis*, 15(3), 199–236. https://doi.org/10.1093/pan/mpl013
- Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2011). MatchIt: Nonparametric preprocessing for parametric causal inference. *Journal of Statistical Software*, *42*(8), 1–28. https://doi.org/10.18637/jss.v042.i08
- Ho, D. E., & Rubin, D. B. (2011). Credible Causal Inference for Empirical Legal Studies. *Annual Review* of Law and Social Science, 7(1), 17–40. https://doi.org/10.1146/annurev-lawsocsci-102510-105423
- Hülsmann, F., Wiepking, J., Zimmer, W., Sunderer, G., Götz, K., Sprinke, Y., ... Birzle-Harder, B. (2018). *share - Wissenschaftliche Begleitforschung zu car2go mit batterieelektrischen und konventionellen Fahrzeugen*. Retrieved from www.oeko.de
- Le Vine, S., Zolfaghari, A., & Polak, J. (2014). Carsharing: Evolution, Challenges and Opportunities. *ACEA* - *SAG* 22 - *Report*, 1–18. Retrieved from https://www.acea.be/uploads/publications/SAG_Report_-_Car_Sharing.pdf
- Loose, W. (2016). *Mehr Platz zum Leben wie CarSharing Städte entlastet*. Retrieved from https://www.carsharing.de/sites/default/files/uploads/alles_ueber_carsharing/pdf/endbericht_bcs-eigenprojekt_final.pdf
- Martin, E., & Shaheen, S. (2011). The impact of carsharing on public transit and non-motorized travel: An exploration of North American carsharing survey data. *Energies*, *4*(11), 2094–2114. https://doi.org/10.3390/en4112094
- Martin, E., Shaheen, S., & Lidicker, J. (2010). Impact of carsharing on household vehicle holdings. *Transportation Research Record*, (2143), 150–158. https://doi.org/10.3141/2143-19
- Martin, E. W., & Shaheen, S. A. (2011). The Impact of Carsharing on Household Vehicle Ownership. *UC Berkeley ACCESS Magazine*, 1(38), 22–27. Retrieved from https://escholarship.org/uc/item/7w58646d
- Melis, M., Galliano, F., Porrati, F., Beccaria, S., Wells, P., Sanvicente, E., ... Diana, M. (2019). *STARS Deliverable 6.1 Automotive sector potential impact on vehicle sales and substitution patterns.*
- Millard-Ball, A., Murray, G., ter Schure, J., Fox, C., & Burkhardt, J. (2005). *TCRP Report 108. Car-Sharing: Where and How It Succeeds*. Washington D.C.

- Mishra, G. S., Clewlow, R. R., Mokhtarian, P. L., & Widaman, K. F. (2015). The effect of carsharing on vehicle holdings and travel behavior: A propensity score and causal mediation analysis of the San Francisco Bay Area. *Research in Transportation Economics*, 52, 46–55. https://doi.org/10.1016/J.RETREC.2015.10.010
- Nehrke, G., Bergstad, C., Ramos, E., Polk, M., Rodenbach, J., Matthijs, J., ... Horvat, M. (2018). *STARS Deliverable 4.2 Mobility cultures and mobility styles*.
- Nehrke, G., & Loose, W. (2018). *Nutzer und Mobilitätsverhalten in verschiedenen CarSharing-Varianten.* Retrieved from https://carsharing.de/sites/default/files/uploads/stars_wp4_t41_projektbericht_bcs_deutsch_fin al_1.pdf
- Ntziachristos, L., Samaras, Z., Kouridis, C., Samaras, C., Hassel, D., Mellios, G., ... Geivanidis, S. (2018). *EMEP/EEA air pollutant emission inventory guidebook 2016 - Update July 2018*. Retrieved from https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoralguidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view
- Ortúzar, J. de D., & Willumsen, L. G. (2011). *Modelling Transport* (Fourth Edi; WILEY, Ed.). John Wiley & Sons, Ltd.
- Probst, A., Utzmann, H., & Kipp, T. (2015). *Endbericht Evaluation CarSharing (EVA-CS) Landeshauptstadt München*. Retrieved from https://www.muenchentransparent.de/dokumente/3885730
- QGIS Development Team. (2019). QGIS 3.4.13. Retrieved from http://qgis.osgeo.org
- R Core Team. (2013). *R: A language and environment for statistical computing.* Vienna (Austria): R Foundation for Statistical Computing.
- Ramos, E., Bergstad, C., Polk, M., Chicco, A., Diana, M., & Nehrke, G. (2019). *STARS Deliverable 4.3 Overall assessment of the drivers for behavioural change*. Retrieved from http://stars-h2020.eu/wp-content/uploads/2019/06/STARS-D4.3.pdf
- Riegler, S., Juschten, M., Hössinger, R., Gerike, R., Rößger, L., Schlag, B., ... Kopp, J. (2016). *CarSharing 2025* – *Nische oder Mainstream?* Retrieved from https://www.ifmo.de/files/publications_content/2016/ifmo_2016_Carsharing_2025_de.pdf
- Rodenbach, J., Mathijs, J., Chicco, A., Diana, M., & Nehrke, G. (2018). *STARS Deliverable 2.1 Car sharing in Europe A multidimensional classification and inventory*. Retrieved from http://stars-h2020.eu/wp-content/uploads/2019/06/STARS-D2.1.pdf
- Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. *American Statistician*, *39*(1), 33–38. https://doi.org/10.1080/00031305.1985.10479383
- Schlüter, J., & Weyer, J. (2019). Car sharing as a means to raise acceptance of electric vehicles: An empirical study on regime change in automobility. *Transportation Research Part F: Traffic Psychology and Behaviour*, 60, 185–201. https://doi.org/10.1016/j.trf.2018.09.005
- Schreier, H., Grimm, C., Kurz, U., Schwieger, D. B., Keßler, S., & Möser, D. G. (2018a). Analysis of the impacts of car-sharing in Bremen, Germany. 38. Retrieved from https://northsearegion.eu/media/5724/analysis-of-the-impact-of-car-sharing-in-bremen-

2018_team-red_final-report_english_compressed.pdf

- Schreier, H., Grimm, C., Kurz, U., Schwieger, D. B., Keßler, S., & Möser, D. G. (2018b). *Analyse der auswirkungen des car-sharing in Bremen*. 99.
- Tsamboulas, D. A. (2001). Parking fare thresholds: A policy tool. *Transport Policy*, *8*(2), 115–124. https://doi.org/10.1016/S0967-070X(00)00040-8
- Westat. (2019). 2017 NHT Data User Guide. Retrieved from https://nhts.ornl.gov/assets/NHTS2017_UsersGuide_04232019_1.pdf

Appendix 1: Travel survey questions list

Notation guidelines

- ★ Questions are numbered only to understand the maximum length of the survey.
- ★ Questions with "a" (e.g. Q5a) are addressed to users, while questions with "b" (e.g. Q5b) are asked to non-users.
- **★ START_TRIP**: the variables are indicated with this notation.
- ★ **RED_CAUSE_B:** all variables with "**_B**" in the CAR OWNERSHIP section are referred to the situation before the car sharing subscription (only in case of user).
- ★ **RED_CAUSE_A:** all variables with "_**A**" in the CAR OWNERSHIP section are referred to the situation after the car sharing subscription (only in case of user).
- ★ 1: variable codes are indicated with this notation.

CAR SHARING AND TRAVEL BEHAVIOUR

In this section information about car sharing subscription and usage frequency of different transport means will be asked.

- Q1 CS_USER Are you currently a member of a car sharing service?
 - 1 = Yes
 - 0 = No

IF CS_USER = 1

Q2a CITY In which of the following two cities do you use car sharing more often?

Dropdown menu

- 1 = Milan
- 2 = Turin
- **Q3a MEMBER** Which car sharing operator are you a member? When did you subscribe? If you are registered to more than one service, please report them in chronological order from the least recent to the most recent.
 - 1. SERV_CS1 Dropdown menu (CS services available) YR_CS1 (Years: 2001 -> 2019);
 - 2. SERV_CS2 Open answer YR_CS2 Year;
 - 3. SERV_CS3 Open answer YR_CS3 Year;
 - SERV_CS4 Open answer YR_CS4 Year;
 - 5. SERV_CS5 Open answer YR_CS5 Year;

Q4a CS_ACTIVE_USER Have you used car sharing at least once?

- **1** = Yes
- **0** = No

ELSE IF $CS_USER = 0$

Q2b POT_CS_USER To what extent are you likely to become a member of a car sharing service?

1 (Extremely unlikely) - 5 (Extremely likely)

END IF

Q5 SEASON_TICKET_PT Do you own a season ticket for public transport in the town where you live?

- 1 = Yes 0 = No
- **Q6 SEASON_TICKET_BS** Are you registered to a bike sharing service?
 - a. **1** = Yes
 - b. **0** = No

Q7 MODEFREQU / MODEFREQNU How often did you use the following travel modes in the last month? Possible answers: 6 = Daily, 5 = 4-6 days/week, 4 = 1-3 times/week, 3 = few times a month, 2 = More seldom, 1 = Never.

- FREQ_BIKE Bicycle
- **FREQ_BS** Bike sharing
- **FREQ_CAR_D** Car as driver
- IF CS_USER = 1 **FREQ_CS** Car sharing as driver
- FREQ_CAR_P Car as passenger
- FREQ_TAXI Taxi
- FREQ_BUS Urban and suburban bus, tram
- FREQ_METRO Metro
- FREQ_TRAIN Train
- FREQ_WALK Walking

IF CS_USER = 1

Q8a MODEFREQUBEF Considering the following travel modes did you use them more often, equally often or less often in the past, before starting to use car sharing? Possible answers: **1** = more often than today, **2** = as often as today, **3** = less often than today, **4** = not used before

- **BEF_BIKE** Bicycle
- **BEF_BS** Bike sharing

- **BEF_CAR_D** Car as driver
- **BEF_CAR_P** Car as passenger
- **BEF_TAXI** Taxi
- BEF_BUS Urban and suburban bus, tram
- **BEF_METRO** Metro
- **BEF_TRAIN** Train
- **BEF_WALK** Walking

Q9a FREQCSSEASON IF FREQ_CS <> 1 How often did you use car sharing in each period of the last 12 months? Possible answers: 6 = Daily, 5 = 4-6 days/week, 4 = 1-3 times/week, 3 = few times a month, 2 = More seldom, 1 = Never.

- **SPRING** March 2018 May 2018
- SUMMER June 2018 August 2018
- AUTUMN September 2018 November 2018
- WINTER December 2018 February 2019

END IF

TRIP INFORMATION

IF CS_USER = 1 **AND** CS_ACTIVE_USER=1

In this section information about the last trip performed using car sharing as a driver will be asked. Additionally we will ask you which alternative transport mode you would have used if car sharing had not been available.

Please now focus on the last trip performed driving a car sharing vehicle.

Q10a IF the interviewed is a member of more than one car sharing service **SERV_USED** Which car sharing service did you use? **Dropdown menu** (List of the services operating within the city)

Otherwise **SERV_USED** = **SERV_CS1**

- Q11a DAY_U In which day of the week did you perform the trip?
 - a. 1 = Monday;
 - b. 2 = Tuesday;
 - c. **3** = Wednesday;
 - d. 4 = Thursday;
 - e. 5 = Friday;
 - f. **6** = Saturday;
 - g. **7** = Sunday;
- Q12a START_TRIP_U What time did you leave? hh:mm
- Q13a ORIGIN_U Where did you start from? Please write the specific address/coordinates on a map.

Q14a PURP_O_U Why were you there?

- a. **1** = Home (house where you usually live);
- b. **2** = Work (in the usual place of work where you work);
- c. **3** = Education (school or university where you study);
- d. 4 = Business (work not in the usual place e.g. in a client's office, for a meeting etc.);
- e. 5 = Personal business (e.g. hairdressers, launderettes, dry-cleaners, betting shops, solicitors, banks, estate agents, libraries, churches; or for medical consultations or treatment);
- f. 6 = Taking away or picking up people (for example, taking a child to school);
- g. **7** = Grocery shopping;
- h. 8 = Visiting a shopping centre
- 9 = Eating and/or drinking (unless the main purpose was to meet friends/relatives);
- j. **10** = Visiting friends, relatives (both at someone's home or at a pub, restaurant, etc.;
- k. **11** = Taking a stroll in the city centre
- I. **12** = Taking an excursion in nice weather or holidays;
- m. 13 = Other discretionary and recreational activities (all types of entertainment or sport, clubs, and voluntary work, non-vocational evening classes, political meetings, etc.).
- Q15a DEST_U Where did you go? Please write the specific address/coordinates on a map .
- **Q16a PURP_ D_U** Why did you go there?
 - a. **1** = Home (house where you usually live);
 - b. **2** = Work (in the usual place of work where you work);
 - c. **3** = Education (school or university where you study);
 - d. 4 = Business (work not in the usual place e.g. in a client's office, for a meeting etc.);
 - e. 5 = Personal business (e.g. hairdressers, launderettes, dry-cleaners, betting shops, solicitors, banks, estate agents, libraries, churches; or for medical consultations or treatment);
 - f. 6 = Taking away or picking up people (for example, taking a child to school);
 - g. **7** = Grocery shopping;
 - h. 8 = Visiting a shopping centre
 - i. 9 = Eating and/or drinking (unless the main purpose was to meet friends/relatives);

- j. 10 = Visiting friends, relatives (both at someone's home or at a pub, restaurant, etc.;
- k. 11 = Taking a stroll in the city centre
- I. **12** = Taking an excursion in nice weather or holidays;
- m. 13 = Other discretionary and recreational activities (all types of entertainment or sport, clubs, and voluntary work, non-vocational evening classes, political meetings, etc.).

Q17a END_TRIP_U What time did you arrive? hh:mm

Q18a ALT_TRIPS_U To what extent do you agree with the following statement?

1 (Strongly disagree) - 5 (Strongly agree)

If car sharing had not been available for that trip...

- **ALT_TRIP1** I would have not performed that trip;
- ALT_TRIP2 I would have used a different travel mode;
- **ALT_TRIP3** I would have changed my travel schedule;
- ALT_TRIP4 I would have changed trip destination;
- **ALT_TRIP5** I would have used car sharing in combination with another mode.

IF ALT_TRIP2 = 3 OR 4 OR 5

Q19a ALT_MODE_U Which of the following travel mode(s) would you have used if car sharing had not been available?

1 (Very unlikely) - 5 (very likely)

- a. **WALK** Walking
- b. **BIKE** Bicycle;
- c. **BS** Bike sharing;
- d. CAR_D Car as driver;
- e. CAR_P Car as passenger;
- f. TAXI Taxi;
- g. BUS Urban or suburban bus, tram;
- h. METRO Metro;
- i. **TRAIN** Train.

END IF

IF ALT_TRIP4 = 3 OR 4 OR 5

Q20a ALT_DEST_U You declared that if car sharing had not been available you would have changed trip destination. Would the new trip destination has been closer or farther compared to the current trip destination?

• 1 = Closer;

- **2** = Farther;
- **3** = More or less at the same distance.

END IF

IF ALT_TRIP5 = 3 **OR** 4 **OR** 5

Q21a ALT_MODE_U2 Which of the following travel mode(s) would you have used <u>in combination</u> with car sharing if car sharing had not been available at the origin/destination of your trip?

1 (Very unlikely) - 5 (very likely)

- a. **WALK** Walking
- b. **BIKE** Bicycle;
- c. **BS** Bike sharing;
- d. BUS Urban or suburban bus, tram;
- e. METRO Metro;
- f. **TRAIN** Train.

END IF

IF CS_USER = 0 **OR** (CS_USER=1 **AND** CS_ACTIVE_USER=0)

In this section information about the last trip performed within your city using car (as driver or as passenger), public transport, bike or walking will be asked. Additionally, we will ask you which alternative transport mode you would have used if the selected transport mode had not been available. Now please focus on your last trip.

- **Q8b MODE_USED** Which travel mode did you use most of the time?
 - a. WALK Walking
 - b. **BIKE** Bicycle;
 - c. BS Bike sharing;
 - d. **CAR_D** Car as driver;
 - e. CAR_P Car as passenger;
 - f. TAXI Taxi;
 - g. **BUS** Urban or suburban bus, tram;
 - h. METRO Metro;
 - i. TRAIN Train.
- **Q9b DAY_NU** In which day of the week did you perform the trip?
 - a. **1** = Monday;
 - b. **2** = Tuesday;
 - c. **3** = Wednesday;
 - d. 4 = Thursday;
 - e. **5** = Friday;
 - f. **6** = Saturday;
 - g. 7 = Sunday;

- Q10b START_TRIP_NU What time did you leave? hh:mm
- Q11b ORIGIN_NU Where did you start from? Please write the specific address/coordinates on a map.
- **Q12b PURP_O_NU** Why were you there?
 - a. 1 = Home (house where you usually live);
 - b. **2** = Work (in the usual place of work where you work);
 - c. **3** = Education (school or university where you study);
 - d. 4 = Business (work not in the usual place e.g. in a client's office, for a meeting etc.);
 - e. 5 = Personal business (e.g. hairdressers, launderettes, dry-cleaners, betting shops, solicitors, banks, estate agents, libraries, churches; or for medical consultations or treatment);
 - f. 6 = Taking away or picking up people (for example, taking a child to school);
 - g. **7** = Grocery shopping;
 - h. 8 = Visiting a shopping centre
 - 9 = Eating and/or drinking (unless the main purpose was to meet friends/relatives);
 - j. 10 = Visiting friends, relatives (both at someone's home or at a pub, restaurant, etc.;
 - k. **11** = Taking a stroll in the city centre
 - I. **12** = Taking an excursion in nice weather or holidays;
 - m. 13 = Other discretionary and recreational activities (all types of entertainment or sport, clubs, and voluntary work, non-vocational evening classes, political meetings, etc.).
- Q13b DEST_NU Where did you go? Please write the specific address/coordinates on a map .
- **Q14b PURP_ D_NU** Why did you go there?
 - a. **1** = Home (house where you usually live);
 - b. **2** = Work (in the usual place of work where you work);
 - c. **3** = Education (school or university where you study);
 - d. 4 = Business (work not in the usual place e.g. in a client's office, for a meeting etc.);
 - e. 5 = Personal business (e.g. hairdressers, launderettes, dry-cleaners, betting shops, solicitors, banks, estate agents, libraries, churches; or for medical consultations or treatment);
 - f. 6 = Taking away or picking up people (for example, taking a child to school);

- g. **7** = Grocery shopping;
- h. **8** =Visiting a shopping centre
- 9 = Eating and/or drinking (unless the main purpose was to meet friends/relatives);
- j. 10 = Visiting friends, relatives (both at someone's home or at a pub, restaurant, etc.;
- k. **11** = Taking a stroll in the city centre
- I. **12** = Taking an excursion in nice weather or holidays;
- m. 13 = Other discretionary and recreational activities (all types of entertainment or sport, clubs, and voluntary work, non-vocational evening classes, political meetings, etc.).

Q15b END_TRIP_NU What time did you arrive? **hh:mm**

Q16b ALT_TRIPS_NU To what extent do you agree with the following statements?

1 (Strongly disagree) - 5 (Strongly agree)

If the used travel means ({MODE_USED}) had not been available for that trip...

- ALT_TRIP1 I would have not performed that trip;
- ALT_TRIP2 I would have used a different travel mode;
- **ALT_TRIP3** I would have changed my travel schedule;
- ALT_TRIP4 I would have changed trip destination;
- **ALT_TRIP5** I would have used car sharing in combination with another transport mode (IF CS_USER=1 **AND** CS_ACTIVE_USER=0).

IF ALT_TRIP2 = 3 **OR** 4 **OR** 5

- **Q17b** ALT_MODE_NU Which of the following travel means would you have used if {MODE_USED} had not been available?
 - 1 (Very unlikely) 5 (very likely)
 - a. WALK Walking
 - b. **BIKE** Bicycle;
 - c. **BS** Bike sharing;
 - d. **CS** Car sharing (IF CS_USER=1 **AND** CS_ACTIVE_USER=0)
 - e. **CAR_D** Car as driver;
 - f. **CAR_P** Car as passenger;
 - g. TAXI Taxi;
 - h. **BUS** Urban or suburban bus, tram;
 - i. METRO Metro;
 - j. TRAIN Train.

ELSE IF ALT_TRIP4 = 3 OR 4 OR 5

Q18b ALT_DEST_NU You declared that if the used mode {MODE_USED} had not been available you would have changed trip destination. Would the new trip destination has been closer or farther compared to the current trip destination?

- 1 = Closer;
- **2** = Farther;
- **3** = More or less at the same distance.

END IF

IF ALT_TRIP5 = 3 **OR** 4 **OR** 5

Q19b ALT_MODE_U2 Which of the following travel mode(s) would you have used <u>in combination</u> with car sharing if car sharing had not been available at the origin/destination of your trip?

1 (Very unlikely) - 5 (very likely)

- a. WALK Walking
- b. **BIKE** Bicycle;
- c. BS Bike sharing;
- d. BUS Urban or suburban bus, tram;
- e. METRO Metro;
- f. TRAIN Train.

END IF

END IF

CAR OWNERSHIP

In this section information about changing in car ownership at the household level will be asked. Please consider as household the household unit or the people with whom you have emotional bond that are currently living with you, excluding guests or those who now live elsewhere for study or work.

Q22 HH_CAR How many cars do you currently have available in your household? Please include commercial vehicles, those made available by the employer (company cars), those temporarily lent or under repair. Do not include cars that are permanently out of order.

- 0 = 0
- **1** = 1
- **2** = 2

- **3** = 3
- **4** = 4 or more

IF CS_USER = 1

Q23a HH_CAR_PREV_U How many cars were available in your household when you registered with {**SERV_CS1**} in {**YR_CS1**}?

- **0** = 0
- **1** = 1
- **2** = 2
- **3** = 3
- **4** = 4 or more
- **Q24a HH_CAR_PREV_Y_U** How many cars were available in your household 12 months before registering with {SERV_CS1} in {YR_CS1}?
 - **0** = 0
 - **1** = 1
 - **2** = 2
 - **3** = 3
 - **4** = 4 or more

IF HH_CAR = HH_CAR_PREV= HH_CAR_PREV_Y

CASE 1: The number of cars is unchanged

- Q25a CASE1 To what extent do you agree with the following statements? 1 (Strongly disagree) - 5 (Strongly agree)
 - 1. IF HH_CAR <>0, **SUB** I am thinking about replacing one or more owned cars
 - [1 (Strongly disagree) 5 (Strongly agree)]
 - 2. IF HH_CAR <>0, **SUB_CS** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - 0 = No
 - 3. IF HH_CAR <>0, **SELL** I am thinking about selling, scraping or getting rid of one or more owned cars without replacing them

[1 (Strongly disagree) - 5 (Strongly agree)]

- 4. IF HH_CAR <>0, **SELL_CS** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - 0 = No
- 5. PURCH I am thinking about buying a (Se HH_CAR <>0 "an extra") car
 [1 (Strongly disagree) 5 (Strongly agree)]

- 6. **PURCH_CS** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - 0 = No
- 7. AVOID I gave up buying a (Se HH_CAR <>0 "an extra") car
 [1 (Strongly disagree) 5 (Strongly agree)]
- 8. **AVOID_CS** This decision is due, at least in part, to car sharing membership
 - 1 = Yes
 - 0 = No

END IF

IF HH_CAR_PREV_Y - HH_CAR_PREV > 0,

CASE 2: Cars sold before the registration

For the following questions consider the time when you sold the latest car before registering to {SERV_CS1} in {YR_CS1}.

- **Q25a RED_CAUSE_B** Is the reduction in the number of cars in your household deriving from a voluntary scrapping?
 - 1 = Yes
 - 0 = No (The car-scrapping was caused by an accident, for car ownership transfer to another relative from the transfer of the vehicle to another family, changes in the composition of the household, failed renew of the driving licence, disability to drive)

IF RED_CAUSE =1 AND IF HH_CAR_PREV_Y- HH_CAR_PREV=1,

One car sold before the registration

- **Q26a RED_WHEN_B** When this car was sold?
 - 1. Several months before the registration with {SERV_CS1} in {YR_CS1}.
 - Few weeks or just before the registration with {SERV_CS1} in {YR_CS1}.
- **Q27a RED_INFL_CS_B** To what extent did the registration to a car sharing service affect your choice to sell this car? **[1** (No influence) **5** (Strong Influence)**]**
- **Q28a PARK_SPACE_PAST_B(WP)** You got rid of one car before the registration with **{SERV_CS1}** in **{YR_CS1}**. Where the car sold was usually parked from 9:00am to 17:00pm on weekdays?
 - **1.** Paying park near home (guarded or not)

- 2. Paying park near workplace/ school/ university
- **3.** Garage or private space near home
- 4. Garage or private space near workplace/ school/ university
- 5. Roadside near home
- 6. Roadside near workplace/ school/ university
- 7. Free parking near home
- 8. Free parking near workplace/ school/ university

Q29a PARK_SPACE_PAST_B(OP) You got rid of one car before the registration with {SERV_CS1} in {YR_CS1}. Where the sold car was usually parked in other times?

- **1.** Paying park near home (guarded or not)
- 2. Paying park near workplace/ school/ university
- **3.** Garage or private space near home
- 4. Garage or private space near workplace/ school/ university
- **5.** Roadside near home
- 6. Roadside near workplace/ school/ university
- 7. Free parking near home
- 8. Free parking near workplace/ school/ university

ELSE IF RED_CAUSE =1 AND IF HH_CAR_PREV_Y- HH_CAR_PREV>1,

Many cars sold before the registration

- Q26a RED_WHEN_B2 When the latest car was sold before the registration with {SERV_CS1} in {YR_CS1}?
 - **1.** Several months before this registration
 - 2. Few weeks or just before this registration
- **Q27a RED_INFL_CS_B2** To what extent did the registration to a car sharing service affect your choice to sell this car? **[1** (No influence) **5** (Strong Influence)**]**
- **Q28a PARK_SPACE_PAST_B2(WP)** You got rid of many cars before the registration with **{SERV_CS1}** in **{YR_CS1}**. Where sold cars were usually parked from 9:00am to 17:00pm on weekdays?
 - 1. Paying park near home (guarded or not)
 - 2. Paying park near workplace/ school/ university
 - **3.** Garage or private space near home
 - 4. Garage or private space near workplace/ school/ university
 - **5.** Roadside near home
 - 6. Roadside near workplace/ school/ university
 - **7.** Free parking near home
 - 8. Free parking near workplace/ school/ university

- Q29a PARK_SPACE_PAST_B2(OP) You got rid of many cars before the registration with {SERV_CS1} in {YR_CS1}. Where sold cars were usually parked in other times?
 - **1.** Paying park near home (guarded or not)
 - 2. Paying park near workplace/ school/ university
 - **3.** Garage or private space near home
 - 4. Garage or private space near workplace/ school/ university
 - **5.** Roadside near home
 - 6. Roadside near workplace/ school/ university
 - **7.** Free parking near home
 - 8. Free parking near workplace/ school/ university

END IF

- **Q30a RED_ALT_B** Which one among the following means of transport started being mostly used for those trips that were formerly made with the no longer available car?
 - **BIKE** Private bycicle
 - **BS** Bycicle of a bike sharing service
 - CAR_D Car driver of another available car in the household
 - CAR_P Car passenger of another available car in the household
 - **CS** Car sharing
 - **TAXI** Taxi
 - **BUS** Urban and suburban buses, tram
 - **METRO** Underground
 - **TRAIN** Train
 - WALK Walk
 - **NONE** No one, We no longer perform such trips

ELSE IF HH_CAR_PREV_Y - HH_CAR_PREV < 0,

CASE 3: Cars bought before the registration

For the following questions consider the time when you bought the latest car before registering to {SERV_CS1} in {YR_CS1}.

IF HH_CAR_PREV_Y-HH_CAR_PREV = -1,

One car bought before the registration

Q25a PURCH_WHEN_B When this car was bought?

- 1. Several months before the registration with {SERV_CS1} in {YR_CS1}
- Few weeks or just before the registration with {SERV_CS1} in {YR_CS1}

Q26a PURCH_INFL_CS_B To what extent did the registration to a car sharing service affect your choice to buy this car? E.g. the use of a specific car model through car sharing has encouraged me to buy it; using car sharing a lot I understood the importance of having the car owned [1 (No influence) - 5 (Strong Influence)]

ELSE IF HH_CAR_PREV_Y-HH_CAR_PREV < 1,

Many cars bought before the registration

- Q25a PURCH_WHEN_B2 When the latest car was bought before joining {SERV_CS1} in {YR_CS1}?
 - **1.** Several months before this registration
 - 2. Few weeks or just before this registration
- **Q26a PURCH_INFL_CS_B2** To what extent did the registration to a car sharing service affect your choice to buy this car? E.g. the use of a specific car model through car sharing has encouraged me to buy it; using car sharing a lot I understood the importance of having the car owned
 - [1 (No influence) 5 (Strong Influence)]

END IF

END IF

IF HH_CAR_PREV - HH_CAR > 0,

CASE 4: Cars sold after the registration

At the time you registered to a car sharing service there was/were {HH_CAR_PREV} car(s) in your household, while now there is/are {HH_CAR} car(s). For the following questions consider this time period.

- **Q31a RED_CAUSE_A** Is the reduction in the number of cars in your household deriving from a voluntary scrapping?
 - **1** = Yes
 - 0 = No (The car-scrapping was caused by an accident, for car ownership transfer to another relative from the transfer of the vehicle to another family, changes in the composition of the household, failed renew of the driving licence, disability to drive)

IF RED_CAUSE =1 **AND** IF HH_CAR_PREV-HH_CAR = 1,

One car sold after the registration

Q32a **RED_WHEN_A** When this car was sold?

- 1. Within few weeks after the registration with {SERV_CS1} in {YR_CS1}
- Several months or years after registration with {SERV_CS1} in {YR_CS1}

- **Q33a RED_INFL_CS_A** To what extent did the registration to a car sharing service affect your choice to sell this car? **[1** (No influence) **5** (Strong Influence)**]**
- Q34a PARK_SPACE_PAST_A(WP) You got rid of one car after the registration with {SERV_CS1} in {YR_CS1}. Where the car sold was usually parked from 9:00am to 17:00pm on weekdays?
 - **1.** Paying park near home (guarded or not)
 - 2. Paying park near workplace/ school/ university
 - **3.** Garage or private space near home
 - 4. Garage or private space near workplace/ school/ university
 - **5.** Roadside near home
 - 6. Roadside near workplace/ school/ university
 - 7. Free parking near home
 - 8. Free parking near workplace/ school/ university
- Q35a PARK_SPACE_PAST_A(OP) You got rid of one car after the registration with {SERV_CS1} in {YR_CS1}. Where the sold car was usually parked in other times?
 - **1.** Paying park near home (guarded or not)
 - 2. Paying park near workplace/ school/ university
 - **3.** Garage or private space near home
 - 4. Garage or private space near workplace/ school/ university
 - 5. Roadside near home
 - 6. Roadside near workplace/ school/ university
 - 7. Free parking near home
 - 8. Free parking near workplace/ school/ university

ELSE IF RED_CAUSE =1 **AND** IF HH_CAR_PREV-HH_CAR > 1,

Many cars sold after the registration

Q32a RED_WHEN_A When the latest car was sold after joining {SERV_CS1} in {YR_CS1}?

- **1.** Within few weeks after this registration
- 2. Several months or years after this registration
- Q33a RED_INFL_CS_A To what extent did the registration to a car sharing service affect your choice to sell this car? [1 (No influence) 5 (Strong Influence)]

Q34a PARK_SPACE_PAST_A2(WP) You got rid of many cars after the registration with {SERV_CS1} in {YR_CS1}. Where sold cars were usually parked from 9:00am to 17:00pm on weekdays?

- **1.** Paying park near home (guarded or not)
- 2. Paying park near workplace/ school/ university
- 3. Garage or private space near home
- 4. Garage or private space near workplace/ school/ university
- 5. Roadside near home
- 6. Roadside near workplace/ school/ university
- 7. Free parking near home
- 8. Free parking near workplace/ school/ university
- Q35a PARK_SPACE_PAST_B2(OP) You got rid of many cars after the registration with {SERV_CS1} in {YR_CS1}. Where sold cars were usually parked in other times?
 - **1.** Paying park near home (guarded or not)
 - 2. Paying park near workplace/ school/ university
 - **3.** Garage or private space near home
 - 4. Garage or private space near workplace/ school/ university
 - 5. Roadside near home
 - 6. Roadside near workplace/ school/ university
 - **7.** Free parking near home
 - 8. Free parking near workplace/ school/ university

END IF

- Q36a CASE4 To what extent do you agree with the following statements?1 (Strongly disagree) 5 (Strongly agree)
 - 1. IF RED_CAUSE =0 **OR** IF HH_CAR <>0, **SUB_A** I am thinking about
 - replacing one or more owned cars
 - [1 (Strongly disagree) 5 (Strongly agree)]
 - IF RED_CAUSE =0 OR IF HH_CAR <>0, SUB_CS_A This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - **0** = No
 - 3. IF HH_CAR <>0 **SELL_CS_A** I am thinking about selling, scraping or getting rid of one or more owned cars without replacing them

[1 (Strongly disagree) - 5 (Strongly agree)]

- 4. IF HH_CAR <>0 **SELL_CS_A** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - **0** = No
- 5. **PURCH_A** I am thinking about buying an extra car

[1 (Strongly disagree) - 5 (Strongly agree)]

- 6. **PURCH_CS_A** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - 0 = No
- 7. **AVOID_A** I gave up buying an extra car
 - [1 (Strongly disagree) 5 (Strongly agree)]
- 8. **AVOID_CS_A** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - 0 = No
- **Q37a RED_ALT_A** Which one among the following means of transport is now mainly used for those trips that were formerly made with the no longer available car(s)?
 - **BIKE** Private bycicle
 - **BS** Bycicle of a bike sharing service
 - **CAR_D** Car driver of another available car in the household
 - **CAR_P** Car passenger of another available car in the household
 - CS Car sharing
 - **TAXI** Taxi
 - **BUS** Urban and suburban buses, tram
 - METRO Underground
 - **TRAIN** Train
 - WALK Walk
 - NONE No one, We no longer perform such trips

IF HH_CAR_PREV - HH_CAR = 0 AND HH_CAR_PREV != HH_CAR_PREVY

CASE 5: The number of cars after the registration is unchanged

Q31a CASE5 To what extent do you agree with the following statements? 1 (Strongly disagree) - 5 (Strongly agree)

1. IF HH_CAR <>0, **SUB_A** I am thinking about replacing one or more owned cars

[1 (Strongly disagree) - 5 (Strongly agree)]

- 2. IF HH_CAR <>0, **SUB_CS_A** This decision is due, at least in part, to car sharing membership
 - 1 = Yes
 - 0 = No
- 3. IF HH_CAR <>0, **SELL_A** I am thinking about selling, scraping or getting rid of one or more owned cars without replacing them

[1 (Strongly disagree) - 5 (Strongly agree)]

- 4. IF HH_CAR <>0, **SELL_CS_A** This decision is due, at least in part, to car sharing membership
 - 1 = Yes
 - 0 = No
- 5. **PURCH_A** I am thinking about buying an extra car

[1 (Strongly disagree) - 5 (Strongly agree)]

- 6. **PURCH_CS_A** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - **0** = No
- 7. AVOID_A I gave up buying an extra car

[1 (Strongly disagree) - 5 (Strongly agree)]

- 8. **AVOID_CS_A** This decision is due, at least in part, to car sharing membership
 - 1 = Yes
 - 0 = No

ELSE IF HH_CAR_PREV - HH_CAR < 0,

CASE 6: Cars bought after the registration

At the time you registered to a car sharing service there was/were {HH_CAR_PREV} car(s) in your household, while now there is/are {HH_CAR} car(s). For the following questions consider this time period.

IF HH_CAR_PREV-HH_CAR = -1,

One car bought after the registration

- Q31a **PURCH_WHEN_A** When this car was bought?
 - 1. Within few weeks after the registration with {SERV_CS1} in {YR_CS1}
 - Several months or years after the registration with {SERV_CS1} in {YR_CS1}
- Q32a PURCH_INFL_CS_A To what extent did the registration to a car sharing service affect your choice to buy this car? E.g. the use of a specific car model through car sharing has encouraged me to buy it; using car sharing a lot I understood the importance of having the car owned
 [1 (No influence) 5 (Strong Influence)]

ELSE IF HH_CAR_PREV-HH_CAR < 1,

Many cars bought after the registration

Q31a PURCH_WHEN_A2 When the first car was bought after joining {SERV_CS1} in {YR_CS1}?

- 1. Within few weeks after this registration
- 2. Several months or years after this registration
- Q32a PURCH_INFL_CS_A2 To what extent did the registration to a car sharing service affect your choice to buy this car? E.g. the use of a specific car model through car sharing has encouraged me to buy it; using car sharing a lot I understood the importance of having the car owned
 [1 (No influence) 5 (Strong Influence)]

END IF

- Q33a CASE6 To what extent do you agree with the following statements?1 (Strongly disagree) 5 (Strongly agree)?
 - SUB_A I am thinking about replacing one or more owned cars
 [1 (Strongly disagree) 5 (Strongly agree)]
 - 2. **SUB_CS_A** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - 0 = No
 - 3. **SELL_A** I am thinking about selling, scraping or getting rid of one or more owned cars without replacing them
 - [1 (Strongly disagree) 5 (Strongly agree)]
 - 4. **SELL_CS_A** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - 0 = No
 - 5. **PURCH_A** We are thinking to buy an extra car
 - [1 (Strongly disagree) 5 (Strongly agree)]
 - 6. **PURCH_CS_A** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - 0 = No
 - 7. AVOID_A I gave up buying an extra car
 - [1 (Strongly disagree) 5 (Strongly agree)]
 - 8. **AVOID_CS_A** This decision is due, at least in part, to car sharing membership
 - **1** = Yes
 - 0 = No

END IF

Q38a CS_ALT To what extent do you agree with the following statements?

[1 (Strongly disagree) - 5 (Strongly agree)]

If the car sharing operator that you normally use shut down the service in the city ...

- 1. I would buy a car
- 2. I would use more often another car sharing service
- **3.** I would completely stop using car sharing

IF CS_ALT - 1. > 3:

Q39a SP_PARK_SPACE_WP Think about the car you declared you would buy in case the car sharing operator that you normally use shut down the service. Where this car would be parked from 9:00am to 17:00pm on weekdays?

- **1.** Paying park near home (guarded or not)
- 2. Paying park near workplace/ school/ university
- 3. Garage or private space near home
- 4. Garage or private space near workplace/ school/ university
- 5. Roadside near home
- 6. Roadside near workplace/ school/ university
- 7. Free parking near home
- 8. Free parking near workplace/ school/ university

Q340a SP _PARK_SPACE_OP Where this car would be parked in other times?

- **1.** Paying park near home (guarded or not)
- 2. Paying park near workplace/ school/ university
- 3. Garage or private space near home
- 4. Garage or private space near workplace/ school/ university
- 5. Roadside near home
- 6. Roadside near workplace/ school/ university
- 7. Free parking near home
- 8. Free parking near workplace/ school/ university

END IF

------ USER PART END ------

IF CS_USER = 0

In this section information about changing in car ownership of your household will be asked.

IF HH_CAR=0

Q23b HH_CAR_OWNED Has your current household ever had at least an available car? Include the commercial vehicles, the ones available to the employer, those temporarily lent or under repair

- **1** = Yes
- 0 = No

IF HH_CAR_OWNED = 1

#A car (or more than one) has been sold

Q24b CAR_CHANGE_WHEN When was the last time you bought, changed, sold, scrapped or replaced a car? Dropdown menu YYYY (1=1990 -> 30=2019)

Q25b HH_CAR_PREV_NU Before that, how many available cars did you have?

- **0** = 0
- **1** = 1
- **2** = 2
- **3** = 3
- **4** = 4 or more
- **Q26b CASE_NU** To what extent do you agree with the following statements??
 - 1. PURCH I am thinking about buying a car

[1 (Strongly disagree) - 5 (Strongly agree)]

- 2. **PURCH_CS** This decision is due, at least in part, to the fact that I intend to enrol to a car sharing service
 - **1** = Yes
 - **0** = No
- 3. AVOID I gave up buying a car
 - [1 (Strongly disagree) 5 (Strongly agree)]
- 4. **AVOID_CS** This decision is due, at least in part, to the fact that I intend to enrol to a car sharing service
 - **1** = Yes
 - 0 = No

Q27b RED_ALT_NU Which one among the following means of transport is now mainly used for those trips that were formerly made with the no longer available car(s)?

- **BIKE** Private bycicle
- **BS** Bycicle of a bike sharing service
- **CS** Car sharing
- TAXI Taxi
- BUS Urban and suburban buses, tram
- METRO Underground
- TRAIN Train
- WALK Walk
- NONE No one, We no longer perform such trips

ELSE IF HH_CAR_OWNED = 0

- **Q24b CASE_NU_N** To what extent do you agree with the following statements?
 - 1. **PURCH** We are thinking to buy a car
 - [1 (Strongly disagree) 5 (Strongly agree)]
 - 2. **PURCH_CS** This decision is due, at least in part, to the fact that I intend to enrol to a car sharing service
 - **1** = Yes
 - 0 = No
 - 3. **AVOID** I gave up buying a car

[1 (Strongly disagree) - 5 (Strongly agree)]

- 4. **AVOID_CS** This decision is due, at least in part, to the fact that I intend to enrol to a car sharing service
 - **1** = Yes
 - 0 = No

END IF

ELSE IF HH_CAR<>0

- Q23b CAR_CHANGE_WHEN2 When was the last time you bought, changed, sold, scrapped or replaced a car? Dropdown menu YYYY (1=2019 -> 30=1990, 31=Before 1990)
- **Q24b** HH_CAR_PREV_NU2 Before that, how many cars did you have available?
 - **0** = 0
 - **1** = 1
 - 2 = 2
 - **3** = 3
 - **4** = 4 or more
- **Q25b CASE_NU2** To what extent do you agree with the following statements?
 - SUB I am thinking about replacing one or more owned cars
 [1 (Strongly disagree) 5 (Strongly agree)]
 - 2. **SUB_CS** This decision is due, at least in part, to the fact that I intend to enrol to a car sharing service
 - **1** = Yes
 - 0 = No
 - 3. **SELL_CS** I am thinking about selling, scraping or getting rid of one or more owned cars without replacing them
 - [1 (Strongly disagree) 5 (Strongly agree)]

- 4. **SELL_CS** This decision is due, at least in part, to the fact that I intend to enrol to a car sharing service
 - 1 = Yes
 - **0** = No
- 5. **PURCH** We are thinking to buy a car
 - [1 (Strongly disagree) 5 (Strongly agree)]
- 6. **PURCH_CS** This decision is due, at least in part, to the fact that I intend to enrol to a car sharing service
 - **1** = Yes
 - **0** = No
- 7. AVOID I gave up buying a car
 - [1 (Strongly disagree) 5 (Strongly agree)]
- 8. **AVOID_CS** This decision is due, at least in part, to the fact that I intend to enrol to a car sharing service
 - **1** = Yes
 - 0 = No

IF HH_CAR – HH_CAR_PREV <0,

CASE 7: Cars have been sold

Q26b RED_ALT7 Which one among the following means of transport is now mainly used for those trips that were formerly made with the no longer available car(s)?

- **BIKE** Private bycicle
- **BS** Bycicle of a bike sharing service
- **CAR_D** Car driver of another available car in the household
- **CAR_P** Car passenger of another available car in the household
- **CS** Car sharing
- TAXI Taxi
- BUS Urban and suburban buses, tram
- METRO Underground
- **TRAIN** Train
- WALK Walk
- **NONE** No one, We no longer perform such trips

END IF

END IF

Q27b OFFER_IMPR To what extent the following car sharing features would entice you in using the service?

[1 (absolutely not important) - 5 (very important)]

1. Possibility of booking a parking space at destination to avoid looking for parking

- 2. Possibility of free parking in any parking space without limitations
- 3. Increased availability of cars
- 4. Availability of different car models
- 5. Availability of cars whenever I want
- **6.** Greater extension of the operating area and/or diffusion of the stations (charging stations in case of electric car sharing)
- **7.** More stations (charging stations in case of electric car sharing) within the area currently served
- **8.** Increased availability of reserved parking spaces near interchange points (train station, metro stations, bus terminal)
- 9. Possibility of parking inside guarded areas or in underground car parks
- **10.** Increased visibility of parking areas and parking areas dedicated in public spaces
- **11.** Better connection with public transport stops
- **12.** Possibility of booking a car hours or days in advance
- 13. Greater simplicity in booking procedures
- 14. Service provider's telephone assistance 24/7
- 15. Useful and timely information on new offers and changes in terms of use
- **16.** Discount for longer renting periods (e.g. more than a couple of hours or a day)
- **17.** Discount for shorter renting periods (e.g. less than 1-2 hour)
- **18.** Ease of use of the car
- **19.** Car equipped with child seats
- **20.** Possibility of transporting animals
- **21.** Possibility of transporting bicycles
- **22.** Design and car-look
- **23.** Vehicles with upgraded technical and technological equipment, e.g. air conditioning, navigation, Bluetooth etc.
- 24. Internal and external car conditions and cleanliness
- 25. Assistance in case of breakdowns or damages

END IF

----- NON-USER PART END ------

IF HH_CAR<>0

- IF HH_CAR = 1 One car is currently available in your household.
- IF HH_CAR = 2 Please consider the two cars currently available in your household as "Car 1" and "Car 2".
- IF HH_CAR = **3** Please consider the three cars currently available in your household as "Car 1", "Car 2" and "Car 3".
- IF HH_CAR = 4 Please consider the three cars currently available in your household as "Car 1", "Car 2", "Car 3" and "Car 4".

FOR n FROM 1 TO HH_CAR:

Q41 PARK_SPACE_WP_n Where the car(n) is usually parked from 9:00am to 17:00pm on weekdays?

- **1.** Paying park near home (guarded or not)
- 2. Paying park near workplace/ school/ university
- **3.** Garage or private space near home
- 4. Garage or private space near workplace/ school/ university
- 5. Roadside near home
- 6. Roadside near workplace/ school/ university
- 7. Free parking near home
- 8. Free parking near workplace/ school/ university
- Q42 **PARK_SPACE_OP_n** Where the car is usually parked in other times?
 - 1. Paying park near home (guarded or not)
 - 2. Paying park near workplace/ school/ university
 - 3. Garage or private space near home
 - 4. Garage or private space near workplace/ school/ university
 - **5.** Roadside near home
 - 6. Roadside near workplace/ school/ university
 - 7. Free parking near home
 - 8. Free parking near workplace/ school/ university

END IF

SOCIODEMOGRAPHIC CHARACTERIZATION

- **Q43 GENDER** What is your gender?
 - 1. Male
 - 2. Female
 - 3. Other
- Q44 AGE When you were born? Dropdown menu YYYY (1900 -> 2001)
- Q45 **REGION_LIVE** In which city do you currently live?

Dropdown menu with the regions of the country

IF REGIONLIVE = 1

Q46 CITY_LIVE_L In which city do you live?

Dropdown menu with all the cities in that region

Q47 ZIP_CODE_L Please select the usual residence ZIP code

Dropdown menu with all the ZIP codes of that region

ELSE IF REGIONLIVE = 2

Q46 CITY_LIVE_P In which city do you live?

Dropdown menu with all the cities in that region

Q47 ZIP_CODE_P Please select the usual residence ZIP code

Dropdown menu with all the ZIP codes of that region

ELSE IF REGIONLIVE = 3

- Q46 **CITY_LIVE_O** In which city do you live? **Open answer**
- **Q47 ZIP_CODE_O** Please insert the usual residence ZIP code **Open answer**

END IF

Q48 EDUCATION What is the highest education level you have? Select the answer that you think best suits you. If you have not yet completed your education, please mark the degree you will reach next.

- 1. No studies
- 2. Primary school
- 3. Middle school
- 4. High school
- 5. University degree (Bachelor, Master of Science, Doctorate)

Q49 EMPL What is your current job or employment situation?

- **1.** Entrepreneur, freelancer
- 2. Officer, manager
- **3.** Employee, trade employee
- 4. Worker
- 5. Teacher
- 6. Salesperson
- 7. Artisan, retailer
- 8. Student
- 9. Housewife
- 10. Retired
- 11. Waiting for first employment, never worked
- 12. Unemployed
- 13. Other Open answer

We ask you now to consider the household unit or the people with whom you have emotional bond that are currently living with you, excluding guests or those who now live elsewhere for study or work.

Q50 HH_SIZE How many people, including yourself, live in your household?

- **1.** 1
- **2.** 2
- **3.** 3
- **4**. 4

```
5. 5 or more
```

```
IF HH_SIZE > 1
```

Q51 HH_EMPL How many people in your household, including yourself, currently work?

- 0. 0
 1. 1
- **2.** 2
- **3.** 3
- **4.** 4
- **5.** 5 or more

```
MUST BE <= HH_SIZE
```

Q52 HH_DRIV_LICENCE How many drivers / licensees, including yourself, are there in your household?

- **1.** 1
- **2.** 2
- **3.** 3
- **4.** 4
- **5.** 5 or more

MUST BE <= HH_SIZE

Q53 HH_CS How many of people have at least one car sharing subscription, including yourself, in your household?

- **0.** 0
- **1.** 1
- **2.** 2
- **3.** 3
- **4.** 4
- **5.** 5 or more

MUST BE <= HH_DRIV_LICENCE

Q54 HH_CHILD Do you have children living in your household?

- 0. No
- **1.** 1
- **2.** 2
- **3.** 3
- **4.** 4

5. 5 or more

MUST BE <= HH_SIZE

```
IF HH_CHILD <> 0
```

Q55 HH_U18 How many of them are underage?

0. 0
1. 1
2. 2
3. 3
4. 4
5. 5 or more

MUST BE <= HH_CHILD</p>

END IF

END IF

Q56 HH_INCOME Considering the income of all members or people with whom you have emotional bond currently living with you, excluding guests or those who now live elsewhere for study or work, in which of the following ranges does the average net monthly income of your household fall?

- 1. Up to 500€
- 2. 501€ 1000€
- 3. 1001€ 1500€
- 4. 1501€ 2000€
- 5. 2001€ 2500€
- 6. 2501€ 3000€
- 7. 3001€ 4000€
- 8. 4001€ 5000€
- 9. 5001€ 6000€
- **10.** 6001€ 10.000 €
- **11.** More than 10.001 €

Appendix 2: Local variants of the travel survey

STARS Travel survey questions	Flanders panel survey	Internal survey from car sharing operators within the Capital Region of Brussels			
Q1	Same	Same	Same		
Q2a	Missing	Missing	Missing		
Q2b	Same	Missing	Missing		
Q3a	Same	Missing	Same		
Q4a	Missing	Missing	Missing		
Q5	Same	Missing	Missing		
Q6	Same	Missing	Missing Different: "What kind of ticket do you usually use?" + "What kind of ticket did you usually use before your first registration?" Answers: A) single fare or multi- trip tickets B) 1 day tickets (24- hour tickets) B) 1 day tickets (24- hour tickets) C) weekly ticket (multi- day tickets) C) weekly ticket (multi- day tickets) D) monthly pass E) annual pass (abo tickets, jobtickets) F) other tickets (also severely-disabled- cards,)		

			 (v19) Did you use public transport at your place of residence before you first registered for car sharing? (v20) What kind of ticket did you usually use before your first registration? 		
Q7	Same	Missing	Same		
Q8a	Missing	Same	Same		
Q9a	Missing	Missing	Different: If you think back in the past twelve months: how often do you use a car from the following car sharing- services?		
Q10a	Missing	Missing	Missing		
Q11a	Missing	Missing	Missing		
Q12a	Missing	Missing	Missing		
Q13a	Missing	Missing	Missing		
Q14a	Missing	Missing	Missing		
Q15a	Missing	Missing	Missing		
Q16a	Missing	Missing	Different answers: A) way to work/job training/university B) visiting relatives/ friends in another town C) Taking a stroll in the city centre		

			 D) Going out for dinner E) Taking an excursion in nice weather F) Shopping for groceries G) Visiting a shopping centre H) Weekend activities I) Taking away and picking up people J) Other purpose
Q17a	Missing	Missing	Missing
Q18a	Missing	Missing	Different: one choice instead of Likert scale
Q19a	Missing	Missing	Different: one choice instead of Likert scale
Q20a	Missing	Missing	Same
Q21a	Missing	Missing	Missing
Q8b	Missing	Missing	Same
Q9b	Missing	Missing	Missing
Q10b	Missing	Missing	Missing
Q11b	Missing	Missing	Missing
Q12b	Missing	Missing	Missing
Q13b	Missing	Missing	Missing
Q14b	Missing	Missing	Different answers: A) way to work/job training/university B) visiting relatives/ friends in another town C) Taking a stroll in the city centre

			 D) Going out for dinner E) Taking an excursion in nice weather F) Shopping for groceries G) Visiting a shopping centre H) Weekend activities I) Taking away and picking up people J) Other purpose
Q15b	Missing	Missing	Missing
Q16b	Missing	Missing	Different: one choice instead of Likert scale
Q17b	Missing	Missing	Different: one choice instead of Likert scale
Q18b	Missing	Missing	Same
Q19b	Missing	Missing	Missing
Q22	Same	Same	Same
Q23a	Missing	Missing	Same
Q24a	Missing	Missing	Same
Q25a	Missing	Other wording: "How likely do you consider the chance that you would have purchased an (additional) car if you had not subscribed to a car sharing organisation? A) Yes - we had certainly purchased a(n extra) car B) Probably - we had probably purchased a(n extra) car C) Probably not -	Missing

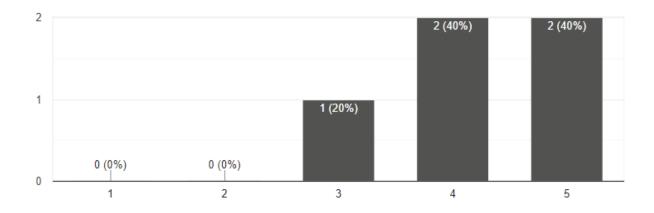
			I	
		we had considered		
		purchasing a(n extra) car D)		
		No - We wouldn't have		
		purchased a(n extra) car"		
Q26a	Missing	Missing	Missing	
Q27a	Missing	Missing	Missing	
Q28a	Missing	Missing	Same	
Q29a	Missing	Missing	Same	
Q30a	Missing	Missing	Missing	
Q31a	Missing	Missing	Missing	
Q32a	Missing	Missing	Missing	
Q33a	Missing	Missing	Missing	
Q34a	Missing	Missing	Same	
Q35a	Missing	Missing	Same	
Q36a	Missing	Missing	Missing	
Q37a	Missing	Missing	Missing	
Q38a	Missing	Missing	Missing	
Q39a	Missing	Missing	Missing	
Q40a	Missing	Missing	Missing	
Q23b	Missing	Missing	Missing	
Q24b	Missing	Missing	Other answers: A) I plan to own a car in the next 12 months B) I will get a company car in the next 12 months, which I can also use privately C) I would like to buy my own car, but	

			postponedthepurchase until later.D) I would buy my owncar if my circumstancesrequire it.E) I have not had myown car for some timeand I do not plan to buyone.
Q25b	Missing	Missing	Missing
Q26b	Missing	Missing	Missing
Q27b	Missing	Missing	Missing
Q41	Missing	Missing	Missing
Q42	Missing	Missing	Different: Where is your car usually parked when you are at home?
Q43	Same	Same	Same
Q44	Other answer possibilities: A) 18-34 B) 35-54 C) 55+	Other answer possibilities: A) younger than 19 years B) 19-25 years C) 26-39 years D) 40-49 years E) 50-64 years F) 65 years or older	Same
Q45	Same	Missing	Missing (only Frankfurt citizens)
Q46	Missing	Missing	Missing (only Frankfurt citizens)
Q47	Missing	Missing	Same
Q48	Same	Missing	Same
Q49	Same	Missing	Different answers: A) Employed B) Self-employed

			C) TraineeD) School educationE) University educationF) Unemployed/retired	
Q50	Same	Same	Same	
Q51	Same	Missing	Missing	
Q52	Same	Missing	Same	
Q53	Missing	Missing	Missing	
Q54	Same	Same	Missing	
Q55	Missing	Same		
Q56	Same	Missing	Different ranges: A) <1000€ B) 1000-2000€ C) 2000-3000€ D) 3000-4000€ E) 4000-5000€ F) >5000€ G) I do not want to answer	

Table 49: Differences between STARS travel survey and other survey exploited within the Belgiancase study

Appendix 3: Uptake cities questionnaires and aggregated answers

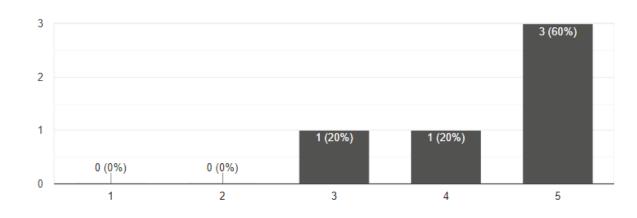

Questionnaire sent to the Uptake cities after the first webinar

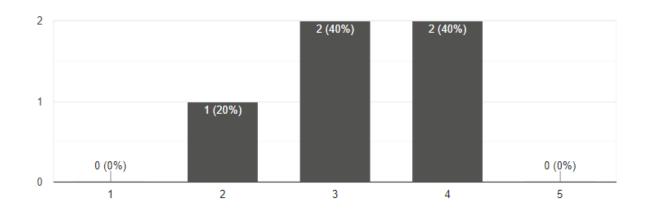
- 1. How familiar are you personally with the car sharing topic in general?
- 2. How useful overall did you find the 1st webinar in terms of gaining new knowledge about car sharing?
- 3. How did you find the amount of presented information?
- 4. What is the most interesting information you have learned during the Webinar 1?
- 5. Did you find some information or discussion useful to implement a new policy or measure related to car sharing in your city?
- 6. What would be most interesting for you to hear more about in our 2nd webinar?

1. How familiar are you personally with the car sharing topic in general

5 responses

TARS




2. How useful overall did you find the 1st webinar in terms of gaining new knowledge about car sharing

5 responses

3. How did you find the amount of presented information?

5 responses

4. What is the most interesting information you have learned during the Webinar 1?

3 responses

All the presentation was very interesting. The last presentation brought something new

car sharing management schemes models

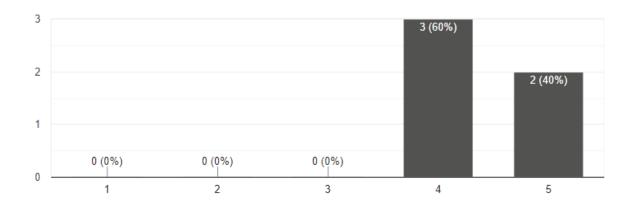
5. Did you find some information or discussion useful to implement a new policy or measure related to car sharing in your city?

4 responses

I found a lot of excellent ideas but in my country (Bulgaria) the legal frame is not allowing to apply them at present.

Not really, I saw most of the informations and presentations on earlier seminars and conferences. In a very dynamic market, showing data from before 5-10 years is useless, unless the goal is to show historic evolution, I understood that this was not the case.

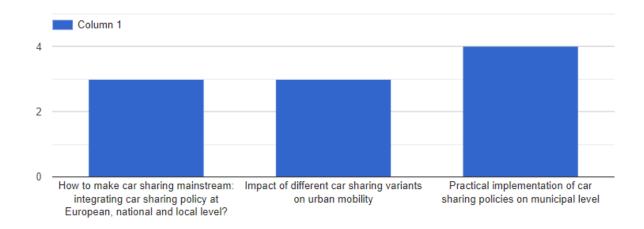
Yes

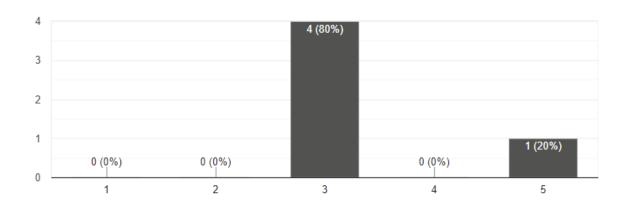

Yes.

Questionnaire sent to the Uptake cities after the second webinar

- 1. How useful do you find the selected topics in the 2nd webinar?
- 2. What was the most interesting topic in the 2nd webinar for you as a city representative?
- 3. How did you find the amount of presented information?
- 4. What is the most interesting information you have learned during the Webinar 2?
- 5. What additional information would you need to replicate/ choose the right car sharing system in your city?
- 6. How would you advise us to approach other cities with STARS results before and after the project will end?

1. How useful do you find the selected topics in the 2nd webinar?


5 responses



2. What was the most interesting topic in the 2nd webinar for you as a city representative?

3. How did you find the amount of presented information?

5 responses

4. What is the most interesting information you have learned during the Webinar 2?

3 responses

cars shared with driver, neighbors sharing cars. Mainly the practical issues All issues were interesting for me.

5. What additional information would you need to replicate/ choose the right car sharing system in your city?

3 responses

private cars sharing

ELTIS proposes enough information for us

How to change the national legislation in order to allow car-sharing in Bulgaria. It is still considered by illegal competition to PT.

6. How would you advice us to approach other cities with STARS results before and after the project will end?

3 responses

sharing good practices, workshops.

By organizing workshops together with the corresponding municipalities

By face-to-face seminars and demonstrations (why not a "moving" seminar, circulating from city to city all over EU).

6. What would be most interesting for you to hear more about in our 2nd webinar?

5 responses

How to persuade the state authority that the car sharing is not a competitor of the public transport but a contribution to sustainable urban mobility.

Influence of free floating carsharing on urban mobility. The new CS markets seem to "jump over" the earlier stages of CS evolution based on round trip operators. The large scale implementations of free floating schemes does not leave any place for RT operators starting from scratch.

Car sharing and mobility points

more examples of good practice from the perspective of municipalities

Presenting of car sharing management schemes models from various cities from Europe

Appendix 4: Matching results

Socioeconomic variables (covariates) used to estimate the car sharing membership propensity score are listed in Table 50 below.

Variable	Description	Туре	Level
Age	Age	Metric	Individual
Gender	Gender <i>(M: male, F: female)</i>	<i>F: female)</i> Categorical	
HHsize	Number of household members	Metric	Household
HHchild	Number of children	Metric	Household
HHdrivLic	Number of driving licences	Metric	Household
HHincome	Monthly gross income [k€]	Metric	Household

Table 50: List of variables used in the propensity score matching

The results of the matching procedure are summarised in the following figures. The comparison between the "Treated" group (car sharing members not oversampled) and the "Control" group (the whole non-members sample) characteristics of Milan respondents is reported in Figure 31. Mean values, standard deviations are evaluated for metric variables while proportions of each category are showed for the categorical variable (gender). Then mean differences (Mean Diff.) as well as the median, mean, and maximum value of differences in empirical quantile functions for each covariate are evaluated by the "*matchIt*" function (eQQ Med, eQQ Mean, and eQQ Max, respectively).

```
### Matching procedure
matchit(formula = CSuser ~ Age + Gender + HHsize + HHdrivLic + HHchild + HHincome,
   data = MIdataset, method = "nearest", ratio = 1)
Summary of balance for all data:
    Means Treated Means Control SD Control Mean Diff eQQ Med eQQ Mean eQQ Max
distance
                0.3148 0.2230 0.1175 0.0918 0.0983 0.0930 0.1483
Age
               43.0833
                           51.7233 14.9520 -8.6400 9.0000 8.6056 14.0000
GenderMale
                0.6389
                            0.4575 0.4986 0.1814 0.0000 0.1833 1.0000
GenderFemale
                0.3611
                            0.5425
                                     0.4986 -0.1814 0.0000 0.1778 1.0000
HHsize
                2.5889
                            2.6890
                                      1.1054 -0.1001 0.0000 0.1389 1.0000
HHdrivLic
                1.9778
                            2.0398
                                     0.8609 -0.0620 0.0000 0.0722 1.0000
                            0.6854
HHchild
                0.5444
                                     0.8652 -0.1409 0.0000 0.1611 1.0000
                            3.2825 2.8869 0.2202 0.0000 0.3917 7.0000
HHincome
                3.5028
```

Figure 31: Car sharing members and control group before the matching procedure - Milan

Once the control group is extracted from the whole non-users sample, the same comparative information are reported by the function together with the percent balance improvement and the

new sample size (Figure 32), which is in this case the same of the treated group according to our set

up.

Summary of balance for matched data:								
ŀ	leans Treat	ted Means	s Control	SD Control	Mean Diff	eQQ Med	eQQ Mean	eQQ Max
distance	0.3	148	0.3023	0.1250	0.0125	8e-04	0.0131	0.0502
Age	43.0	833	44.1889	14.1976	-1.1056	1e+00	1.5944	7.0000
GenderMale	0.6	389	0.6389	0.4817	0.0000	0e+00	0.0000	0.0000
GenderFemale	0.3	611	0.3611	0.4817	0.0000	0e+00	0.0000	0.0000
HHsize	2.5	889	2.5833	1.0876	0.0056	0e+00	0.0944	1.0000
HHdrivLic	1.9	778	1.9944	0.8423	-0.0167	0e+00	0.0278	1.0000
HHchild	0.5	444	0.5056	0.7437	0.0389	0e+00	0.0722	1.0000
HHincome	3.5	028	3.3472	3.0932	0.1556	0e+00	0.5111	7.0000
Percent Balanc	e Improve	ment:						
M	lean Diff.	eQQ Med	eQQ Mean	eQQ Max				
distance	86.3555	99.2247	85.9565	66.1481				
Age	87.2042	88.8889	81.4719	50.0000				
GenderMale	100.0000	0.0000	100.0000	100.0000				
GenderFemale	100.0000	0.0000	100.0000	100.0000				
HHsize	94.4489	0.0000	32.0000	0.0000				
HHdrivLic	73.1205	0.0000	61.5385	0.0000				
HHchild	72.4013	0.0000	55.1724	0.0000				
HHincome	29.3661	0.0000	-30.4965	0.0000				
Sample sizes:								
	rol Treat							
A11		80						
Matched		B0						
Unmatched	373	0						
Discarded	0	0						
L								

Figure 32: Car sharing members and control group after the matching procedure – Milan

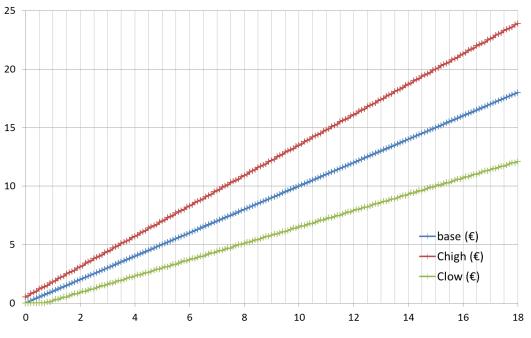
The outcomes of the matching algorithm applied to the Turin samples are reported in Figure 33 below.

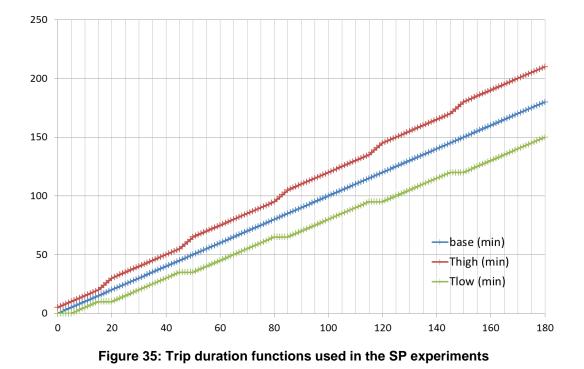

```
### Matching procedure
matchit(formula = CSuser ~ Age + Gender + HHsize + HHdrivLic + HHchild + HHincome,
   data = TOdataset, method = "nearest", ratio = 1)
Summary of balance for all data:
          Means Treated Means Control SD Control Mean Diff eQQ Med eQQ Mean eQQ Max
distance
                 0.3380
                             0.2129
                                      0.1371
                                              0.1252 0.1406
                                                                0.1255 0.1901
Age
                             52.0235
                                       14.9173 -11.8284 13.0000
                 40.1951
                                                               11.8171 18.0000
                            0.4510
                                      0.4986
GenderMale
                 0.5244
                                                0.0734 0.0000
                                                                0.0732 1.0000
                             0.5490
                                                                0.0732 1.0000
GenderFemale
                 0.4756
                                       0.4986
                                                -0.0734 0.0000
                             2.5529
                                       1.0850
                                                                0.1463 1.0000
                                                0.1178 0.0000
HHsize
                 2.6707
                             1.9333
                                      0.7834
                                                0.2618 0.0000
                                                                0.2805 1.0000
HHdrivLic
                 2.1951
                             0.6392
                                      0.8847
                                                -0.1514 0.0000
                                                                0.1585 1.0000
HHchild
                 0.4878
                             2.8167
                                      2.5913 0.4608 0.0000 0.5945 9.5000
HHincome
                 3.2774
Summary of balance for matched data:
         Means Treated Means Control SD Control Mean Diff eQQ Med eQQ Mean eQQ Max
                 0.3380
                                       0.1537 0.0027 0.0022 0.0045 0.0442
distance
                             0.3353
                                               0.1585 1.0000
Age
                40.1951
                            40.0366
                                     14.5809
                                                               1.5732 5.0000
GenderMale
                 0.5244
                             0.5122
                                      0.5029 0.0122 0.0000
                                                               0.0122 1.0000
                             0.4878
GenderFemale
                0.4756
                                      0.5029 -0.0122 0.0000
                                                                0.0122 1.0000
HHsize
                 2.6707
                             2.6098
                                       1.1838 0.0610 0.0000 0.1341 1.0000
                             2.0000 0.8607 0.1951 0.0000 0.1951 1.0000
HHdrivLic
                 2.1951
                             0.4878 0.8202 0.0000 0.0000 0.0488 1.0000
HHchild
                 0.4878
                                      2.7544 0.2317 0.2500 0.6829 9.5000
HHincome
                 3.2774
                             3.0457
Percent Balance Improvement:
          Mean Diff. eQQ Med eQQ Mean eQQ Max
             97.8532 98.4673 96.4153 76.7453
distance
Age
             98.6597 92.3077 86.6873 72.2222
GenderMale
             83.3876 0.0000 83.3333 0.0000
GenderFemale 83.3876 0.0000 83.3333 0.0000
             25.4658 0.0000 30.4348 0.0000
HHdrivLic
HHsize
             48.2339 0.0000
                             8.3333 0.0000
HHchild
             100.0000 0.0000 69.2308 0.0000
HHincome
             49.7133 -Inf -14.8718 0.0000
Sample sizes:
    Control Treated
A11
           255 82
Matched
            82
                    82
Unmatched
            173
                     0
Discarded
             0
                     0
```

Figure 33: Car sharing members and control group before and after the matching procedure - Turin

Appendix 5: SP experiments details and estimation results of binomial logit

As reported in section 3.2, the switch models used in this study were calibrated on data coming from a previous work (Ceccato & Diana, 2018) where stated-preference (SP) experiments were used to investigate the characteristics of one randomly selected trip among those reported in travel diary of each respondents and related mode switching attitudes. In particular, respondents were asked to state their willingness to switch to car sharing from the base mode, which represented the currently used mode, to car sharing under a certain condition obtained as a combination of trip cost and duration. The cost value was selected among three possible values defined through functions, which are represented in Figure 34: same cost of base mode and of car sharing (base), the base cost increased by the 30% (Chigh) and the base cost decreased by the 30% (Clow).




Figure 34: Trip cost functions used in the SP experiments

Concerning the duration value, it was selected among three possible values defined by the functions plotted in Figure 35: same trip duration of base mode and of car sharing (base), the base duration increased (Thigh) and the base duration decreased (Tlow).

STARS

SP experiments results grouped by main transport modes used in the investigated trip - namely walk, bike, car and public transport - are presented in the following Figure 36, Figure 37, Figure 38 and Figure 39 respectively. In every figure the x-axle reports the time difference between car sharing and the reported used mode, while the y-axle reports the difference in terms of cost.

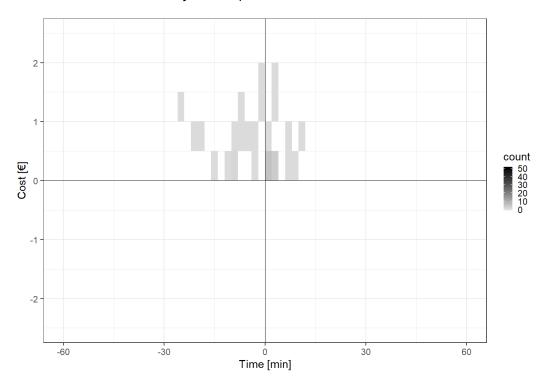


Figure 36: Positive switch from walking to car sharing coming from SP experiments

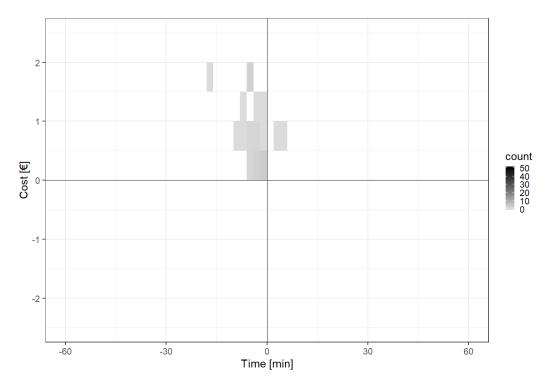


Figure 37: Positive switch from bike to car sharing coming from SP experiments

According to both Figure 36 and Figure 37 many respondents would switch from their current mode (walk or bike) towards car sharing if they could save time for the specific trip investigated. However there are also cases where respondents would change travel mean even if this solution would increase both the travel time and the cost. External elements not captured through SP experiments might influence these choices. Finally, as expected, there are no observations for negative difference between car sharing and non-motorised modes costs; the difference is always positive, since walk and bike trip have no cost from the respondents' point of view.

Switching intention from car towards car sharing resulting in the SP experiments are reported in Figure 38 below. Observations in left-down quadrant represent the situation where car sharing is perceived cheaper and time-saver compared to the private car, which were expectable. Some respondents would use car sharing instead of their private cars. Interestingly, some of them would use car sharing even if they spend more money and time. Here external conditions (such as the possibility to access to restricted areas, socioeconomic characteristics of the respondents, etc.) might have a stronger influence compared to cost and time.

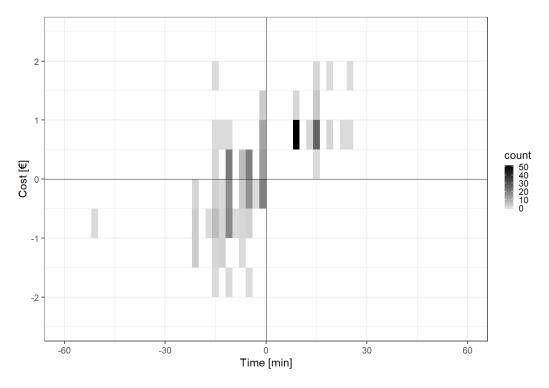
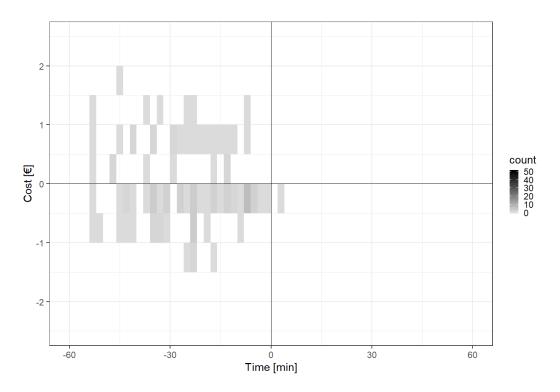



Figure 38: Positive switch from car to car sharing coming from SP experiments

Concerning the switching intention from public transport, Figure 39 shows that almost all respondents would use (for the investigated trip) car sharing instead of transit only if the former allowed them to save time independently from the cost.

Since the dependent variable of the problem was the "yes" or "no" answer given by respondents during SP experiments, switch models used in this study are based on discrete choice model. Among discrete choice models based on Random Utility Maximisation (Bierlaire, 1998), binomial logit models were applied. Those models were calibrated through a stepwise selection of the explanatory variables presented in Table 7 (par. 3.2). In particular a forward selection was used, therefore the model started with no variables and at in each step the addition of variable is tested using a chosen model fit criterion. The variable was added if produced the most statistically significant improvement of the calibration (fit). Adjusted R², Akaike and Bayesian information criterion were taken into account.

The significant explanatory variables retained through this procedure, for each switch model, are reported in the following tables.

Name	Value	Std err	t-test	p-valu	е
B_AGE	-0.538	0.129	-4.160	3.15E-05	***
B_BASE_DUR	-0.059	0.023	-2.610	0.009	**
B_CS_COST	-0.859	0.501	-1.720	0.086	+
B_CS_WALK_DUR	-0.071	0.027	-2.680	0.007	**
B_HH_CAR	-1.240	0.401	-3.090	0.002	**
B_HH_CHILDREN_U	0.597	0.330	1.810	0.070	+
B_HH_WORKERS	0.754	0.281	2.690	0.007	**
Significance codes: *** p< (0.001; ** p<	0.01; * p< 0.	.05; † p<0.10)	

Binomial logit estimation for switching intention from walk trips to car sharing

Table 51: Walk to car sharing switching model - significant coefficients

Statistics					
Sample size:	347				
Init log likelihood:	-240.52				
Final log likelihood:	-74.61				
Likelihood ratio test for the init. model:	331.83				
Rho-square for the init. model:	0.69				
Rho-square-bar for the init. model:	0.66				
Akaike Information Criterion:	165.21				
Bayesian Information Criterion:	196.01				

 Table 52: Walk to car sharing switching model - statistics

Binomial logit estimation for switching intention from bike trips to car sharing

Name	Value	Std err	t-test	p-valu	е
B_AGE	-0.042	0.014	-3.080	0.002	**
B_BASE_DIST	0.000	0.000	-1.680	0.094	+
B_BASE_WALK_DIST	-0.002	0.001	-1.710	0.087	+
B_CS_COST	-0.785	0.458	-1.720	0.086	+
B_D_NH	-1.600	1.000	-1.600	0.104	
B_F_CAR	0.108	0.039	2.790	0.005	**
B_F_PT	-0.055	0.032	-1.720	0.085	+
B_HH_CAR	-1.710	0.735	-2.330	0.020	*
B_HH_SIZE	0.954	0.416	2.290	0.022	*
B_HH_WORKERS	-1.380	0.607	-2.280	0.023	*
B_INCOME_AVG	0.769	0.428	1.800	0.072	+
B_PT_SEASON_TICKET	1.860	1.220	1.530	0.102	
Significance codes: *** p < 0	0.001; ** p<	0.01; * p< 0.	.05; † p<0.10)	

Table 53: Bike to car sharing switching model - significant coefficients

Statistics					
Sample size:	12				
Init log likelihood:	-54.76				
Final log likelihood:	-39.00				
Likelihood ratio test for the init. model:	31.51				
Rho-square for the init. model:	0.29				
Rho-square-bar for the init. model:	0.07				
Akaike Information Criterion:	102.00				
Bayesian Information Criterion:	130.44				

Table 54: Bike to car sharing switching model - statistics

Binomial logit estimation for switching intention from car trips to car sharing

Name	Value	Std err	t-test	p-valu	е
B_AGE	-0.014	0.003	-4.290	0.000	***
B_BASE_COST	-0.318	0.094	-3.360	0.001	***
B_CARPERLICENCE	-0.748	0.222	-3.370	0.001	***
B_CS_COST	-0.522	0.113	-4.630	0.000	***
B_D_MP	0.377	0.148	2.550	0.011	*
B_F_BIKE	0.038	0.014	2.640	0.008	**
B_HH_CHILDREN_U	0.220	0.099	2.220	0.027	*
B_INCOME_AVG	0.147	0.052	2.830	0.005	**
B_ZTL_TO_AP	-1.360	0.745	-1.830	0.068	†
Significance codes: *** n< (0 001· ** n<	0 01· * n < 0	$05 \cdot + n < 0.10$	7	

Significance codes: *** *p*< 0.001; ** *p*< 0.01; * *p*< 0.05; † *p*<0.10

Table 55: Car to car sharing switching model - significant coefficients

Statistics					
Sample size:	1329				
Init log likelihood:	-921.19				
Final log likelihood:	-743.06				
Likelihood ratio test for the init. model:	356.26				
Rho-square for the init. model:	0.19				
Rho-square-bar for the init. model:	0.18				
Akaike Information Criterion:	1504.12				
Bayesian Information Criterion:	1550.85				

Table 56: Car to car sharing switching model - statistics

Binomial logit estimation for switching intention from public transport trips to car sharing

Name	Value	Std err	t-test	p-valu	е
B_AGE	-0.477	0.101	-4.71	0.000	***
B_BASE_COST	-0.401	0.197	-2.04	0.041	*
B_BASE_DIST	0.000	0.000	-2.00	0.046	*
B_BASE_WAIT	-0.032	0.018	-1.75	0.080	†
B_BIKE_SHARING	1.550	0.668	2.32	0.020	*
B_CARPERLICENCE	-0.853	0.404	-2.11	0.035	*
B_CS_COST	-0.387	0.170	-2.27	0.023	*
B_D_WAH	-0.925	0.432	-2.14	0.033	*
B_F_CAR	0.064	0.013	4.79	0.000	***
B_GENDER	-0.672	0.266	-2.53	0.011	*
B_NO_WORK_DAY	0.767	0.425	1.80	0.071	Ť
Significance codes: *** p < 0	0.001; ** p<	0.01; * p< 0.	05; † p<0.10	7	

Table 57: PT to car sharing switching model - significant coefficients

Statistics					
Sample size:	538				
Init log likelihood:	-372.91				
Final log likelihood:	-214.15				
Likelihood ratio test for the init. model:	317.53				
Rho-square for the init. model:	0.43				
Rho-square-bar for the init. model:	0.40				
Akaike Information Criterion:	450.30				
Bayesian Information Criterion:	497.46				

Table 58: PT to car sharing switching model - statistics

Appendix 6: Demographic characteristics of the samples within the Italian case study

The main characteristics at household and individual level of the sample of the Italian case study are reported in Table 59 and Table 60 below. The former refers to the Milan sample whereas the latter to the Turin sample. Both tables report information of the general population (columns 2 and 3), of the respondents not members of a car sharing service (columns 4 and 5) and of the respondents who reported being car sharing members (last two columns).

	Entire sa N	mple %	Non-us N	sers %	Car sharin N	g users %
Totals	1038		553		485	
Household characteristics						
Household members	Avg 2.7	Sd 1.1	Avg 2.7	Sd 1.1	Avg 2.7	Sd 1.2
1	176	17.0%	89	16.1%	87	17.9%
2	299	28.8%	161	29.1%	138	28.4%
3	283	27.3%	158	28.6%	125	25.8%
4	233	22.4%	123	22.2%	110	22.7%
More than 4	47	4.5%	22	4.0%	25	5.1%
Licensed drivers	Avg 2	Sd 0.8	Avg 1.9	Sd 0.8	Avg 2.0	Sd 0.8
1	278	26.8%	141	25.5%	137	28.2%
2	547	52.7%	297	53.7%	250	51.5%
3	149	14.3%	72	13.0%	77	15.9%
4	58	5.6%	38	6.9%	20	4.1%
More than 4	6	0.6%	5	0.9%	1	0.2%
Household cars	Avg1.3	Sd0.7	Avg1.4	Sd0.7	Avg 1.2	Sd 0.7
0	77	7.4%	24	4.3%	53	10.9%
1	602	58.0%	309	55.9%	293	60.4%
2	308	29.7%	188	34.0%	120	24.7%
3	41	4.0%	29	5.2%	12	2.5%
More than 3	10	1.0%	3	0.5%	7	1.4%
Household car sharing members						
0	489	47.1%	489	88.4%	0	0.0%
1	334	32.2%	44	8.0%	290	59.8%
2	172	16.6%	15	2.7%	157	32.4%
3	34	3.3%	3	0.5%	31	6.4%
More than 3	9	0.9%	2	0.4%	7	1.4%
Household income [€/mont	:h]					
Less than 500	42	4.0%	15	2.7%	27	5.6%
500 - 1000	37	3.6%	19	3.4%	18	3.7%
1000 - 1500	93	9.0%	58	10.5%	35	7.2%

1500 - 2000	162	15.6%	90	16.3%	72	14.8%
2000 - 2500	133	12.8%	71	12.8%	62	12.8%
2500 - 3000	164	15.8%	86	15.6%	78	16.1%
3000 - 4000	183	17.6%	112	20.2%	71	14.6%
4000 - 5000	105	10.1%	50	9.0%	55	11.3%
5000 - 6000	40	3.8%	12	2.2%	28	5.8%
6000 - 10.000	38	3.7%	16	2.9%	22	4.5%
More than 10.000	41	4.0%	24	4.3%	17	3.5%
Individual characteristics						
Type of interview						
CAWI	383	36.9%	4	50.3%	105	21.6%
CATI	350	33.7%	5	49.7%	75	15.5%
CAWI (oversampling)	305	29.4%	0	0.0%	305	62.9%
Gender						
Male	535	51.5%	253	45.8%	282	58.1%
Female	503	48.5%	300	54.2%	203	41.9%
Age	Avg 46.9	Sd 14.8	Avg 51.7	Sd 15	Avg 41.4	Sd 12.5
18-24	70	6.7%	28	5.1%	42	8.7%
25-34	169	16.3%	55	10.0%	114	23.5%
35-44	273	26.3%	109	19.7%	164	33.8%
45-54	201	19.4%	114	20.65	87	17.9%
55-64	136	13.1%	88	15.9%	48	9.9%
Over 64	189	18.2%	159	28.7%	30	6.2%
Education level						
Not medium school graduate	6	0.6%	6	1.1%	0	0.0%
Medium school graduate	70	6.7%	46	8.3%	24	5.0%
High school graduate	483	46.5%	266	48.1%	217	44.7%
Degree or Ph.D.	479	46.2%	235	42.5%	244	50.3%
Occupational status						
Entrepreneur, manager	221	21.3%	82	14.8%	139	28.7%
Employee	577	55.6%	289	52.4%	288	59.4%
Student	44	4.2%	15	2.7%	29	6.0%
Retired	172	16.6%	149	26.9%	23	4.7%
Unemployed	24	2.3%	18	3.2%	6	1.2%
PT season ticket						
Yes	600	57.8%	262	47.4%	338	69.7%
No	438	42.2%	291	52.6%	147	30.3%
BS subscription						
Yes	312	30.1%	55	10.0%	257	53.0%
No	726	69.9%	498	90.0%	228	47.0%
Car sharing time					Avg 2.9	sd3.2

Less than 1 year	17	1.6%	0	0.0%	17	3.5%
From 1 up to 2 years	95	9.2%	0	0.0%	95	19.6%
From 2 up to 3 years	106	10.2%	0	0.0%	106	21.9%
From 3 up to 4 years	81	7.8%	0	0.0%	81	16.7%
From 4 up to 5 years	74	7.1%	0	0.0%	74	15.3%
From 5 up to 6 years	52	5.0%	0	0.0%	52	10.7%
More than 6 years	60	5.8%	0	0.0%	60	12.4%
Not member	553	53.3%	553	100.0%	0	0.0%

 Table 59: Key demographic characteristics of the Milan respondents

	Entire sa	mple	Non-us	sers	Car sharin	g use <u>rs</u>
	Ν	%	Ν	%	Ν	%
Totals	436		255		181	
Household characteristics						
Household members	Avg 2.6	Sd 1.1	Avg 2.6	Sd 1.1	Avg 1.4	Sd 0.6
1	80	18.4%	48	18.8%	32	17.7%
2	140	32.1%	83	32.6%	57	31.5%
3	110	25.2%	64	25.1%	46	25.4%
4	93	21.3%	55	21.6%	38	21.0%
More than 4	13	3.0%	5	2.0%	8	4.4%
Licensed drivers	Avg 2	Sd 0.8	Avg 1.9	Sd 0.8	Avg 2.1	Sd 0.9
1	117	26.8%	73	28.6%	44	24.3%
2	234	53.7%	139	54.5%	95	52.5%
3	55	12.6%	31	12.2%	24	13.3%
4	28	6.4%	11	4.3%	17	9.4%
More than 4	2	0.5%	1	0.4%	1	0.5%
Household cars	Avg1.4	Sd0.7	Avg1.4	Sd0.7	avg1.3	sd0.7
0	39	8.9%	21	8.2%	18	9.9%
1	227	52.1%	121	47.4%	106	58.6%
2	147	33.7%	96	37.6%	51	28.2%
3	19	4.4%	16	6.3%	3	1.7%
More than 3	4	0.9%	1	0.4%	3	1.7%
Household car sharing members						
0	230	52.8%	230	90.2%	0	0.0%
1	133	30.5%	20	7.8%	113	62.4%
2	64	14.7%	3	1.2%	61	33.7%
3	7	1.6%	1	0.4%	6	3.3%
More than 3	2	0.5%	1	0.4%	1	0.5%
Household income [€/month]					
Less than 500	13	3.0%	8	3.1%	5	2.8%
500 - 1000	29	6.6%	19	7.4%	10	5.5%

1000 - 1500	64	14.7%	40	15.7%	24	13.3%
1500 - 2000	76	17.4%	39	15.3%	37	20.4%
2000 - 2500	68	15.6%	38	14.9%	30	16.6%
2500 - 3000	70	16.1%	43	16.9%	27	14.9%
3000 - 4000	54	12.4%	34	13.3%	20	11.1%
4000 - 5000	24	5.5%	12	4.7%	12	6.6%
5000 - 6000	15	3.4%	10	3.9%	5	2.8%
6000 - 10.000	6	1.4%	4	1.6%	2	1.1%
More than 10.000	17	3.9%	8	3.1%	9	5.0%
Individual characteristics						
Type of interview						
CAWI	180	41.3%	140	54.9%	40	22.1%
CATI	157	36.0%	115	45.1%	42	23.2%
CAWI (oversampling)	99	22.7%	0	0.0%	99	54.7%
Gender						
Male	211	48.4%	115	45.1%	96	53.0%
Female	225	51.6%	140	54.9%	85	47.0%
Age	Avg 46.1	Sd 15.3	Avg 52	Sd 14.9	Avg 37.8	Sd 11.4
18-24	40	9.2%	14	5.5%	26	14.4%
25-34	87	20.0%	25	9.8%	62	34.2%
35-44	78	17.9%	37	14.5%	41	22.7%
45-54	94	21.6%	56	22.0%	38	21.0%
55-64	55	12.6%	45	17.6%	10	5.5%
Over 64	82	18.8%	78	30.6%	4	2.2%
Education level						
Not medium school graduate	1	0.2%	1	0.4%	0	0.0%
Medium school graduate	45	10.3%	30	11.8%	15	8.3%
High school graduate	207	47.5%	136	53.3%	71	39.2%
Degree or Ph.D.	183	42.0%	88	34.5%	95	52.5%
Occupational status						
Entrepreneur, manager	76	17.4%	40	15.7%	36	19.9%
Employee	238	54.6%	127	49.8%	111	61.3%
Student	31	7.1%	12	4.7%	19	10.5%
Retired	71	16.3%	65	25.5%	6	3.3%
Unemployed	20	4.6%	11	4.3%	9	5.0%
PT season ticket						
				20.00/	112	61.9%
Yes	209	47.9%	97	38.0%	112	
Yes No	209 227	47.9% 52.1%	97 158	38.0% 62.0%	69	38.1%
						38.1%
No						38.1% 45.3%

~ 1 · · ·						
Car sharing time membership					Avg 2.9	sd3.2
Less than 1 year	9	2.1%	0	0.0%	9	5,0%
From 1 up to 2 years	54	12.4%	0	0.0%	54	29,8%
From 2 up to 3 years	49	11.2%	0	0.0%	49	27,1%
From 3 up to 4 years	25	5.7%	0	0.0%	25	13,8%
From 4 up to 5 years	19	4.4%	0	0.0%	19	10,5%
More than 5 years	25	5.7%	0	0.0%	25	13.8%
Not member	255	58.5%	255	100.0%	0	0.5%

 Table 60: Key demographic characteristics of the Turin respondents

Appendix 7: Test performed in person level analyses of the Italian case study

Differences in average values

Shapiro-Wilk normality test was firstly used to check if data is normally distributed. In case of normally distributed data T-test was conducted, while in case of not normally distributed data (Shapiro-Wilk p-value < 0.05) Wilcoxon was used.

```
Full samples (CS members and non-members)
```

```
Milan
CSuser n_interviewees mean_HHcar std_dev
                       1.42
                                  0.684
0
             553
1
             485
                       1.23
                                  0.730
Shapiro-Wilk normality test
     data: MI_users$HHcar
     W = 0.7911, p-value < 2.2e-16
     data: MI_Non-users$HHcar
     W = 0.794, p-value < 2.2e-16
Wilcoxon rank sum test with continuity correction
     data: MI_users$HHcar and MI_Nusers$HHcar
     W = 114460, p-value = 3.848e-06
     alternative hypothesis: true location shift is not equal to 0
Turin
CSuser n_interviewees mean_HHcar std_dev
           255
                          1.43
                                     0.749
0
1
           181
                          1.27
                                     0.728
Shapiro-Wilk normality test
      data: TO_users$HHcar
      W = 0.79149, p-value = 8.568e-15
      data: TO_Nusers$HHcar
      W = 0.84664, p-value = 3.478e-15
Wilcoxon rank sum test with continuity correction
      data: TO_users$HHcar and TO_Nusers$HHcar
      W = 20020, p-value = 0.009194
      alternative hypothesis: true location shift is not equal to 0
```

Samples without car sharing members oversampling

Milan			
CSuser	n_interviewees	mean_HHcar	std_dev
0	553	1.42	0.684
1	172	1.22	0.698

Welch Two Sample t-test


```
data: HHcar by CSuser
      t = 3.281, df = 299.18, p-value = 0.001157
      alternative hypothesis: true difference in means is not equal to 0
      95 percent confidence interval:
       0.07823862 0.31275997
      sample estimates:
      mean in group 0 mean in group 1
             1.417722
                             1.222222
      Turin
      CSuser n_interviewees mean_HHcar std_dev
                      255
                                1.43
                                       0.749
      1
                       72
                                1.30
                                       0.781
      Wilcoxon rank sum test with continuity correction
            data: TOusersHHcar$HHcar and TONOusersHHcar$HHcar
            W = 9285.5, p-value = 0.09479
            alternative hypothesis: true location shift is not equal to 0
Not oversampled members and control group
      Milan
      CSuser n_interviewees mean_HHcar std_dev
                        180
                                  1.4
                                         0.698
      0
      1
                        180
                                  1.22
                                         0.698
      Welch Two Sample t-test
            data: HHcar by CSuser
            t = 2.417, df = 358, p-value = 0.01615
            alternative hypothesis: true difference in means is not equal to 0
            95 percent confidence interval:
             0.03312773 0.32242782
            sample estimates:
            mean in group 0 mean in group 1
                   1.400000
                                   1.222222
      Turin
      CSuser n_interviewees mean_HHcar std_dev
                                1.4
                                       0.878
      0
                       82
      1
                       82
                                1.29
                                       0.781
      Wilcoxon rank sum test with continuity correction
            data: TOUS$HHcar and TOContro]$HHcar
            W = 2831.5, p-value = 0.05944
            alternative hypothesis: true location shift is not equal to 0
```

Pearson's Chi-squared test was firstly used to look for statistical significance in use frequency difference of each transport mode between groups (not oversampled members and control group non-members). Whether H0 hypothesis has been rejected (p-value <0.05), therefore there is at least

one significant difference, the two sample test for equality proportions has been applied for each use frequency.

use frequency.

Use frequency of transport means

Milan

```
Pearson's Chi-squared test
data: Biketable
X-squared = 9.3886, df = 5, p-value = 0.09453
Pearson's Chi-squared test
data: CarDrivertable
X-squared = 35.255, df = 5, p-value = 1.338e-06
       2-sample test for equality of proportions without continuity correction
        Frequency = Never
       data: c(CarDtable[freq, 1], CarDtable[freq, 2]) out of c(sum(CarDtable[,
1]), sum(CarDtable[, 2]))
X-squared = 0.26028, df = 1, p-value = 0.6099
        alternative hypothesis: two.sided
       95 percent confidence interval:
         -0.04954017 0.08442389
       sample estimates:
       prop 1 prop 2
0.1220930 0.1046512
       Frequency = More seldom
       data: c(CarDtable[freq, 1], CarDtable[freq, 2]) out of c(sum(CarDtable[,
       1]), sum(CarDtable[, 2]))
X-squared = 5.7525, df = 1, p-value = 0.01647
alternative hypothesis: two.sided
       95 percent confidence interval:
0.0165417 0.1578769
        sample estimates:
           prop 1
                       prop 2
       0.1744186 0.0872093
       Frequency = Few times a month
       data: c(CarDtable[freq, 1], CarDtable[freq, 2]) out of c(sum(CarDtable[,
1]), sum(CarDtable[, 2]))
X-squared = 1.2679, df = 1, p-value = 0.2602
        alternative hypothesis: two.sided
       95 percent confidence interval:
-0.02143699 0.07957653
        sample estimates:
       prop 1 prop 2
0.07558140 0.04651163
       Frequency = 1-3 times/week
       data: c(CarDtable[freq, 1], CarDtable[freq, 2]) out of c(sum(CarDtable[,
       1]), sum(CarDtable[, 2]))
X-squared = 9.7675, df = 1, p-value = 0.001776
alternative hypothesis: two.sided
       95 percent confidence interval:
         0.05771974 0.24460584
        sample estimates:
       prop 1 prop 2
0.3546512 0.2034884
       Frequency = 4-6 times/week
       data: c(CarDtable[freq, 1], CarDtable[freq, 2]) out of c(sum(CarDtable[,
1]), sum(CarDtable[, 2]))
       x-squared = 0.2301, df = 1, p-value = 0.6314
       alternative hypothesis: two.sided
```



```
95 percent confidence interval:
-0.08868400 0.05380028
       sample estimates:
          prop 1
                     prop 2
       0.1220930 0.1395349
       Frequency = Daily
       data: c(CarDtable[freq, 1], CarDtable[freq, 2]) out of c(sum(CarDtable[,
      1]), sum(CarDtable[, 2]))
X-squared = 30.193, df = 1, p-value = 3.91e-08
alternative hypothesis: two.sided
       95 percent confidence interval:
-0.3585533 -0.1763304
       sample estimates:
       prop 1 prop 2
0.1511628 0.4186047
Pearson's Chi-squared test
data: CarPassengertable
X-squared = 3.6412, df = 5, p-value = 0.6021
Pearson's Chi-squared test
data: PTtable
X-squared = 20.005, df = 5, p-value = 0.001247
       2-sample test for equality of proportions without continuity correction
       Frequency = Never
       data: c(PTtable[freq, 1], PTtable[freq, 2]) out of c(sum(PTtable[, 1]), s
      um(PTtable[, 2]))
X-squared = 6.5549, df = 1, p-value = 0.01046
       alternative hypothesis: two.sided
       95 percent confidence interval:
        -0.1022214 -0.0140577
       sample estimates:
           prop 1
                        prop 2
       0.01744186 0.07558140
       Frequency = More seldom
data: c(PTtable[freq, 1], PTtable[freq, 2]) out of c(sum(PTtable[, 1]), s
       um(PTtable[, 2]))
       x-squared = 1.7357, df = 1, p-value = 0.1877
       alternative hypothesis: two.sided
       95 percent confidence interval:
-0.1155309 0.0225076
       sample estimates:
       prop 1 prop 2
0.09883721 0.14534884
       Frequency = Few times a month
       data: c(PTtable[freq, 1], PTtable[freq, 2]) out of c(sum(PTtable[, 1]), s
       um(PTtable[, 2]))
X-squared = 5.1797, df = 1, p-value = 0.02285
       alternative hypothesis: two.sided
       95 percent confidence interval:
        -0.16174509 -0.01267352
       sample estimates:
          prop 1
                      prop
       0.1046512 0.1918605
       Frequency = 1-3 times/week
       data: c(PTtable[freq, 1], PTtable[freq, 2]) out of c(sum(PTtable[, 1]), s
       um(PTtable[, 2]))
X-squared = 0.29998, df = 1, p-value = 0.5839
       alternative hypothesis: two.sided
       95 percent confidence interval:
-0.05992925 0.10644088
       sample estimates:
```



```
prop 1
                      prop 2
       0.2034884 0.1802326
       Frequency = 4-6 times/week
       data: c(PTtable[freq, 1], PTtable[freq, 2]) out of c(sum(PTtable[, 1]), s
      um(PTtable[, 2]))
X-squared = 0, df = 1, p-value = 1
       alternative hypothesis: two.sided
       95 percent confidence interval:
-0.07912932 0.07912932
       sample estimates:
          prop 1
                      prop
       0.1686047 0.1686047
       Frequency = Daily
data: c(PTtable[freq, 1], PTtable[freq, 2]) out of c(sum(PTtable[, 1]), s
       um(PTtable[, 2]))
X-squared = 11.186, df = 1, p-value = 0.0008242
       alternative hypothesis: two.sided
       95 percent confidence interval:
        0.07141916 0.26579014
       sample estimates:
          prop 1
                      prop 2
       0.4069767 0.2383721
Pearson's Chi-squared test
data: Taxitable
X-squared = 12.237, df = 5, p-value = 0.03168
       2-sample test for equality of proportions without continuity correction
       Frequency = Never
       data: c(Taxitable[freq, 1], Taxitable[freq, 2]) out of c(sum(Taxitable[,
       1]), sum(Taxitable[, 2]))
X-squared = 7.9475, df = 1, p-value = 0.004815
       alternative hypothesis: two.sided
       95 percent confidence interval:
        -0.25503561 -0.04728997
       sample estimates:
          prop 1
                      prop 2
       0.3720930 0.5232558
       Frequency = More seldom
      data: c(Taxitable[freq, 1], Taxitable[freq, 2]) out of c(sum(Taxitable[,
1]), sum(Taxitable[, 2]))
X-squared = 0.46824, df = 1, p-value = 0.4938
alternative hypothesis: two.sided
       95 percent confidence interval:
        -0.06496467 0.13473211
       sample estimates:
          prop 1
                      prop
       0.3546512 0.3197674
       Frequency = Few times a month
      data: c(Taxitable[freq, 1], Taxitable[freq, 2]) out of c(sum(Taxitable[,
1]), sum(Taxitable[, 2]))
X-squared = 1.2404, df = 1, p-value = 0.2654
       alternative hypothesis: two.sided
       95 percent confidence interval:
        -0.02639481 0.09616225
       sample estimates:
      prop 1 prop 2
0.1104651 0.0755814
       Frequency = 1-3 times/week
       data: c(Taxitab]e[freq, 1], Taxitable[freq, 2]) out of c(sum(Taxitable[,
       1]), sum(Taxitable[, 2]))
       x-squared = 4.856, df = 1, p-value = 0.02755
```



```
alternative hypothesis: two.sided
       95 percent confidence interval:
        0.006795199 0.109483870
       sample estimates:
            prop 1
                         prop 2
       0.09302326 0.03488372
       Frequency = 4-6 times/week
      data: c(Taxitable[freq, 1], Taxitable[freq, 2]) out of c(sum(Taxitable[,
1]), sum(Taxitable[, 2]))
X-squared = 0.069706, df = 1, p-value = 0.7918
alternative hypothesis: two.sided
       95 percent confidence interval:
        -0.03734193 0.04896984
       sample estimates:
            prop 1
                         prop 2
       0.04651163 0.04069767
       Frequency = Daily
      data: c(Taxitable[freq, 1], Taxitable[freq, 2]) out of c(sum(Taxitable[,
1]), sum(Taxitable[, 2]))
X-squared = 1.8265, df = 1, p-value = 0.1765
       alternative hypothesis: two.sided
       95 percent confidence interval:
-0.007785349 0.042669070
       sample estimates:
             prop 1
                           prop 2
       0.023255814 0.005813953
Pearson's Chi-squared test
data: Walktable
X-squared = 9.2638, df = 5, p-value = 0.09899
Turin
Pearson's Chi-squared test
data: Biketable
X-squared = 2.6976, df = 5, p-value = 0.7465
Pearson's Chi-squared test
data: CarDtable
X-squared = 3.7426, df = 5, p-value = 0.587
Pearson's Chi-squared test
data: CarPtable
X-squared = 4.9558, df = 5, p-value = 0.4213
Pearson's Chi-squared test
data: PTtable
X-squared = 8.7897, df = 5, p-value = 0.1178
Pearson's Chi-squared test
data: Taxitable
X-squared = 2.0429, df = 5, p-value = 0.843
Pearson's Chi-squared test
data: walktable
X-squared = 5.0191, df = 5, p-value = 0.4136
Ownership PT season ticket
```

Milan

Pearson's Chi-squared test with Yates' continuity correction


```
data: PTownTable
X-squared = 6.0696, df = 1, p-value = 0.01375
```

```
2-sample test for equality of proportions without continuity correction
data: c(PTownTable[freq, 1], PTownTable[freq, 2]) out of c(sum(PTownTable
[, 1]), sum(PTownTable[, 2]))
X-squared = 6.6089, df = 1, p-value = 0.01015
alternative hypothesis: two.sided
95 percent confidence interval:
-0.23404962 -0.03261705
sample estimates:
    prop 1    prop 2
0.3444444 0.4777778
```

Turin

Pearson's Chi-squared test with Yates' continuity correction data: **PTownTable** X-squared = 1.5631, df = 1, p-value = 0.2112

Bike sharing membership

Milan

```
Pearson's Chi-squared test with Yates' continuity correction
data: BStable
X-squared = 60.022, df = 1, p-value = 9.379e-15
```

2-sample test for equality of proportions without continuity correction

```
data: c(BStable[freq, 1], BStable[freq, 2]) out of c(sum(BStable[, 1]), s
um(BStable[, 2]))
X-squared = 61.827, df = 1, p-value = 3.749e-15
alternative hypothesis: two.sided
95 percent confidence interval:
   -0.4634770 -0.2920786
sample estimates:
    prop 1    prop 2
0.5166667 0.8944444
```

Turin

```
Pearson's Chi-squared test with Yates' continuity correction
data: BStable
X-squared = 19.413, df = 1, p-value = 1.053e-05
```

2-sample test for equality of proportions without continuity correction data: c(BStable[freq, 1], BStable[freq, 2]) out of c(sum(BStable[, 1]), s um(BStable[, 2])) X-squared = 20.997, df = 1, p-value = 4.6e-06 alternative hypothesis: two.sided 95 percent confidence interval: -0.4437158 -0.1904305 sample estimates: prop 1 prop 2 0.5731707 0.8902439

TARS

Appendix 8: Important car sharing features for current non-members

Car sharing offer improvement: to what extent the following car sharing features would entice you in using the service? (Q27b)

Improvement	Scale	Milan (n=553)		Turin (r	=255)	Flanders			
						region (n=985)		
Possibility of booking a	1	91	16.5%	54	21.2%	243	24.7%		
parking space at destination	2	57	10.3%	16	6.3%	118	12.0%		
to avoid looking for parking	3	111	20.1%	54	21.2%	195	19.8%		
	4	134	24.2%	57	22.4%	262	26.6%		
	5	160	28.9%	74	29.0%	166	16.9%		
Possibility of free parking in	1	62	11.2%	38	14.9%	240	24.4%		
any parking space without	2	39	7.0%	10	3.9%	115	11.7%		
limitations	3	96	17.4%	36	14.1%	178	18.1%		
	4	118	21.3%	63	24.7%	211	21.4%		
	5	238	43.0%	108	42.4%	241	24.5%		
Increased availability of cars	1	86	15.6%	50	19.6%	248	25.2%		
	2	73	13.2%	14	5.5%	112	11.4%		
	3	149	26.9%	77	30.2%	190	19.3%		
	4	130	23.5%	56	22.0%	259	26.3%		
	5	115	20.8%	58	22.8%	176	17.9%		
Availability of different car	1	143	25.9%	75	29.4%	280	28.4%		
models	2	111	20.1%	42	16.5%	201	20.4%		
	3	159	28.7%	79	31.0%	201	20.4%		
	4	87	15.7%	37	14.5%	216	21.9%		
	5	53	9.6%	22	8.6%	88	8.9%		
Availability of cars whenever I	1	64	11.6%	36	14.1%	235	23.9%		
want	2	45	8.1%	14	5.5%	82	8.3%		
	3	113	20.4%	51	20.0%	174	17.7%		
	4	145	26.2%	60	23.5%	248	25.2%		
	5	186	33.6%	94	36.9%	244	24.8%		
Greater extension of the	1	65	11.8%	42	16.5%	251	25.5%		
operating area and/or	2	52	9.4%	16	6.3%	143	14.5%		
diffusion of the stations (charging stations in case of	3	133	24.1%	56	22.0%	226	22.9%		
electric car sharing)	4	144	26.0%	57	22.4%	243	24.7%		
	5	159	28.7%	84	32.9%	122	12.4%		
More stations (charging	1	60	10.8%	42	16.5%	253	25.7%		
stations in case of electric car	2	60	10.8%	22	8.6%	140	14.2%		
sharing) within the area	3	142	25.7%	63	24.7%	225	22.8%		
currently served	4	151	27.3%	58	22.8%	240	24.4%		
	5	140	25.3%	70	27.5%	126	12.8%		
Increased availability of	1	72	13.0%	45	17.6%	256	26.0%		
reserved parking spaces near	2	53	9.6%	16	6.3%	145	14.7%		

interchange points (train	3	134	24.2%	65	25.5%	215	21.8%
station, metro stations, bus	4	146	26.4%	72	28.2%	226	22.9%
terminal)	5	148	26.8%	57	22.4%	143	14.5%
Possibility of parking inside	1	66	11.9%	50	19.6%	243	24.7%
guarded areas or in	2	71	12.8%	19	7.4%	152	15.4%
underground car parks	3	157	28.4%	63	24.7%	200	20.3%
	4	132	23.9%	55	21.6%	241	24.5%
	5	127	23.0%	68	26.7%	150	15.2%
Increased visibility of parking	1	63	11.4%	45	17.6%	247	25.1%
areas and parking areas	2	64	11.6%	26	10.2%	154	15.6%
dedicated in public spaces	3	171	30.9%	74	29.0%	208	21.1%
	4	155	28.0%	68	26.7%	250	25.4%
	5	100	18.1%	42	16.5%	126	12.8%
Better connection with public	1	63	11.4%	44	17.2%	264	26.8%
transport stops	2	70	12.7%	25	9.8%	148	15.0%
	3	139	25.1%	75	29.4%	220	22.3%
	4	144	26.0%	66	25.9%	225	22.8%
	5	137	24.8%	45	17.6%	128	13.0%
Possibility of booking a car	1	64	11.6%	47	18.4%	272	27.6%
hours or days in advance	2	65	11.8%	22	8.6%	133	13.5%
	3	127	23.0%	66	25.9%	195	19.8%
	4	155	28.0%	62	24.3%	222	22.5%
	5	142	25.7%	58	22.8%	164	16.6%
Greater simplicity in booking	1	66	11.9%	39	15.3%	260	26.4%
procedures	2	47	8.5%	15	5.9%	131	13.3%
	3	140	25.3%	75	29.4%	260	26.4%
	4	165	29.8%	64	25.1%	224	22.7%
	5	135	24.4%	62	24.3%	110	11.2%
Service provider's telephone	1	61	11.0%	38	14.9%	266	27.0%
assistance 24/7	2	57	10.3%	20	7.8%	131	13.3%
	3	142	25.7%	62	24.3%	218	22.1%
	4	153	27.7%	70	27.5%	232	23.6%
	5	140	25.3%	65	25.5%	137	13.9%
Useful and timely information	1	69	12.5%	46	18.0%	285	28.9%
on new offers and changes in	2	67	12.1%	24	9.4%	178	18.1%
terms of use	3	192	34.7%	82	32.2%	233	23.7%
	4	127	23.0%	64	25.1%	204	20.7%
	5	98	17.7%	39	15.3%	85	8.6%
Discount for longer renting	1	69	12.5%	44	17.2%	277	28.1%
periods (e.g. more than a	2	49	8.9%	21	8.2%	142	14.4%
couple of hours or a day)	3	123	22.2%	59	23.1%	225	22.8%
	4	144	26.0%	56	22.0%	213	21.6%
	5	168	30.4%	75	29.4%	129	13.1%
Discount for shorter renting	1	64	11.6%	41	16.1%	295	29.9%
periods (e.g. less than 1-2	2	43	7.8%	14	5.5%	172	17.5%
hour)	3	139	25.1%	54	21.2%	228	23.1%
					0		

	4	138	24.9%	68	26.7%	188	19.1%
	5	169	30.6%	78	30.6%	103	10.5%
Ease of use of the car	1	62	11.2%	50	19.6%	245	24.9%
	2	62	11.2%	16	6.3%	104	10.6%
	3	155	28.0%	63	24.7%	170	17.3%
	4	136	24.6%	67	26.3%	284	28.8%
	5	138	24.9%	59	23.1%	182	18.5%
Car equipped with child seats	1	202	36.5%	107	42.0%	395	40.1%
	2	79	14.3%	27	10.6%	202	20.5%
	3	123	22.2%	62	24.3%	243	24.7%
	4	73	13.2%	32	12.6%	106	10.8%
	5	76	13.7%	27	10.6%	39	4.0%
Possibility of transporting	1	216	39.1%	102	40.0%	443	45.0%
animals	2	79	14.3%	22	8.6%	200	20.3%
	3	110	19.9%	59	23.1%	209	21.2%
	4	85	15.4%	41	16.1%	93	9.4%
	5	63	11.4%	31	12.2%	40	4.1%
Possibility of transporting	1	233	42.1%	107	42.0%	322	32.7%
bicycles	2	88	15.9%	41	16.1%	202	20.5%
	3	129	23.3%	60	23.5%	205	20.8%
	4	66	11.9%	29	11.4%	181	18.4%
	5	37	6.7%	18	7.1%	75	7.6%
Design and car-look	1	231	41.8%	107	42.0%	337	34.2%
	2	100	18.1%	46	18.0%	239	24.3%
	3	133	24.1%	60	23.5%	202	20.5%
	4	66	11.9%	27	10.6%	166	16.9%
	5	23	4.2%	15	5.9%	40	4.1%
Vehicles with upgraded	1	100	18.1%	54	21.2%	265	26.9%
technical and technological	2	64	11.6%	23	9.0%	153	15.5%
equipment, e.g. air conditioning, navigation,	3	158	28.6%	71	27.8%	181	18.4%
Bluetooth etc.	4	133	24.1%	67	26.3%	253	25.7%
blactooth etc.	5	98	17.7%	40	15.7%	133	13.5%
Internal and external car	1	65	11.8%	43	16.9%	249	25.3%
conditions and cleanliness	2	44	8.0%	15	5.9%	113	11.5%
	3	143	25.9%	58	22.8%	179	18.2%
	4	144	26.0%	67	26.3%	251	25.5%
	5	157	28.4%	72	28.2%	192	19.5%
Assistance in case of	1	56	10.1%	35	13.7%	261	26.5%
breakdowns or damages	2	42	7.6%	13	5.1%	109	11.1%
	3	97	17.5%	42	16.5%	207	21.0%
	4	125	22.6%	67	26.3%	232	23.6%
	5	233	42.1%	98	38.4%	174	17.7%

 Table 61: Features that would entice respondents to become car sharing member

STARS

Appendix 9: Additional material used in the evaluation of greenhouse and pollutants emissions

European emission standards and CO₂ emissions of vehicles composing car sharing fleets in Milan and Turin that were considered in the estimation of weighted averaged coefficients used in this study are reported in Table 62 below.

City	Number of cars ⁴⁶	Type of engine	Car models ⁴⁷	Directive	CO₂ exhaust emission [g/km] ⁴⁸
Milan	727	Electric	-	-	0
			FIAT 500 1.2	EURO 6	108
			SMART fortwo	EURO 6	94
			SMART forfour	EURO 6	130
			SMART fortwo Cabrio	EURO 6	120
			BMW Active Tourer	EURO 6	114
Milan	2040	Conventional	BMW Serie 2 Cabrio	EURO 6	118
			BMW Serie 1	EURO 6	109
			MINI 3 Porte	EURO 6	107
			MINI Cabrio	EURO 6	123
			MINI 5 Porte	EURO 6	109
			MINI Clubman	EURO 6	123
Turin	187	Electric	-	-	0
			FIAT 500 1.2	EURO 6	108
Turin	701	Conventional	SMART fortwo	EURO 6	94
Iurin	721	Conventional	SMART forfour	EURO 6	130
			SMART fortwo Cabrio	EURO 6	120

Table 62: Car sharing fleet composition in Milan and Turin

⁴⁶ From "3° Rapporto Nazionale sulla Sharing Mobility" (Ciuffini et al., 2019)

⁴⁷ From car sharing operators webistes – Accessed November 29th, 2019

⁴⁸ <u>https://www.terraup.it/auto</u> - Accessed November 29th, 2019

City	EURO	Petrol	LNG	CNG	EV	Diesel	Hv	orid	ND	Total
							petrol	diesel		
	0	62407	2168	231	0	10821	0	0	109	75736
	1	13761	540	43	0	2103	0	0	3	16450
	2	38641	1343	108	0	6915	0	0	6	47013
	3	38957	1034	161	0	25871	0	3	1	66027
Milan	4	110840	14546	2259	0	55529	661	0	0	183835
	5	64281	7705	1698	0	65831	3518	124	0	143157
	6	73158	5137	1142	0	70524	9711	115	0	159787
	NC ⁴⁹	0	0	0	635	0	0	0	0	635
	NA ⁵⁰	425	2	1	0	7	0	0	9	444
Total		402470	32475	5643	635	237601	13890	242	128	693084
	0	38903	2717	102	0	7043	0	0	12	48777
	1	7908	729	21	0	1541	0	0	0	10199
	2	30255	2601	77	0	6177	0	0	0	39110
	3	35484	1938	308	0	24216	0	0	0	61946
Turin	4	71053	17919	4889	0	47238	129	0	0	141228
	5	34012	10866	1945	0	46527	834	34	1	94219
	6	60716	17780	2252	0	95052	4484	36	0	180320
	NC	0	0	0	385	0	0	0	0	385
	NA	376	2	1	0	2	0	0	6	387
Total		278707	54552	9595	385	227796	5447	70	19	576571

Private car fleet segmentation by EU emission standards and type of fuel in Milan and Turin.

 Table 63: Private car fleet classification by EU emission standards and type of fuel [source:

 http://www.opv.aci.it/WEBDMCircolante/]

Average emission factors used in this document are reported in the below Table 64. These coefficients are obtained by averaging the factors reported in *"Table 3-17: Tier 2 exhaust emission factors for passenger cars, NFR 1.A.3.b.i"* (Ntziachristos et al., 2018) per passenger cars categories (namely Small, Medium and Large-SUV-Executive).

Stage	Directive	СО	NMVOC	NOx	NH₃	PM _{2,5}
						g/km
Petrol						
Euro 0	ECE 15/04	13.300	1.680	2.543	0.002	0.002
Euro 1	91/441/EEC	4.070	0.476	0.459	0.092	0.002
Euro 2	94/12/EEC	2.043	0.218	0.242	0.104	0.002
Euro 3	98/69/EC I	1.797	0.099	0.093	0.034	0.001
Euro 4	98/69/EC II	0.613	0.054	0.059	0.034	0.001
Euro 5	EC 715/2007	0.613	0.054	0.059	0.012	0.001
Euro 6	2014.09	0.613	0.054	0.059	0.012	0.001
Diesel						
Euro 0	ECE 15/04	0.688	0.159	0.762	0.001	0.221
Euro 1	91/441/EEC	0.414	0.062	0.690	0.001	0.084
Euro 2	94/12/EEC	0.296	0.078	0.716	0.001	0.055
Euro 3	98/69/EC I	0.089	0.031	0.771	0.001	0.039
Euro 4	98/69/EC II	0.092	0.014	0.580	0.001	0.031
Euro 5	EC 715/2007	0.043	0.009	0.550	0.002	0.002
Euro 6	2014.09	0.046	0.009	0.350	0.002	0.002

Table 64: Exhaust emission factors for passenger cars

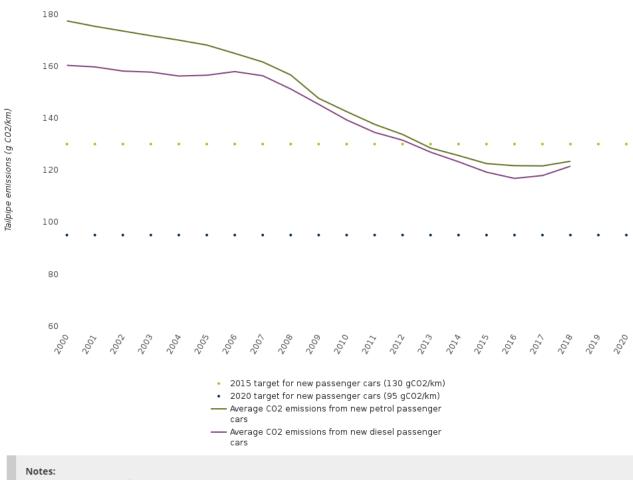

Car fleet registration	Turin	Milan
From 0 to 1 year	64395	46489
From 1 to 2 years	65674	44835
From 2 to 5 years	71691	100744
From 5 to 10 years	110481	159881
From 10 to 15 years	115982	143964
From 15 to 20 years	68601	81495
From 20 to 30 years	40711	55516
From 30 to 40 years	19072	34457
More than 40 years	19157	23610
Not defined	807	2093
Total	576571	693084

Table 65: Private cars composition in Milan and Turin in 2018 by year of registration⁵¹

⁵¹ <u>http://www.opv.aci.it/WEBDMCircolante/</u> - Accessed November 29th, 2019

- g CO2/km: grammes of carbon dioxide per km.

- 2015 target for new passenger cars: 130 g CO2/km.

- 2020 target for new passenger cars: 95 g CO2/km.

Data sources: Monitoring of CO2 emissions from passenger cars - Regulation 443/2009 provided by European Environment Agency (EEA)

Figure 40: Average CO₂ emissions from new passenger cars

TARS

Appendix 10: Costs evaluation of different mobility scenarios

In order to evaluate the potential effects of an increase of both car sharing and parking costs on diverted trips to car sharing from different modes, the two costs were both varied in a range from 0% (all switch scenario) up to 100% of increase with 5% increasing steps.

As a result, a 21x21 matrix of possible scenarios was created. Travelled distances, the quantity of each pollutant analysed in this study, greenhouse gas and respective costs have been evaluated for each scenario. Then, to identify the maximum impact (or rupture) scenario, a cost evaluation of the related externalities was carried out by considering the coefficients reported in par. 3.4.2.

Costs related to each pollutant and greenhouse gas and their difference with the BAU scenario are reported from Figure 41 to Figure 50 for the city of Milan and from Figure 53 to Figure 62 for Turin. It can be noted that the minimum cost deriving from each pollutant/greenhouse gas not necessarily represents the minimum cost in the overall situation.

Finally, the monetary cost of greenhouse and pollutants emissions for the society was summed up for each scenario. The rupture scenario was identified as the scenario that minimises the costs for the society, therefore maximising the positive difference of the gap analysis (BAU – rupture) which are indicated in Figure 52 for the city of Milan and Figure 64 for Turin.

	100	340908	340369	340003	339734	339530	339372	339252	339162	339097	339052	339023	339008	339005	339016	339043	339090	339163	339261	339378	339504	339623
	95	340939	340397	340028	339757	339550	339391	339269	339179	339114	339071	339045	339035	339041	339066	339111	339182	339278	339395	339519	339638	339738
	06	340970	340424	340053	339780	339571	339410	339287	339197	339133	339093	339073	339072	339091	339134	339203	339297	339412	339536	339653	339753	339828
	85	341000	340451	340077	339802	339591	339429	339307	339217	339156	339121	339110	339122	339160	339225	339318	339431	339554	339671	339769	339844	339895
	80	341029	340478	340102	339825	339613	339450	339328	339241	339186	339159	339160	339191	339251	339340	339452	339573	339689	339787	339861	339912	339944
	75	341058	340505	340126	339848	339635	339473	339354	339271	339224	339210	339229	339282	339366	339474	339594	339709	339807	339880	339930	339961	339977
	70	341087	340531	340151	339872	339660	339500	339385	339311	339276	339279	339320	339397	339500	339617	339731	339828	339901	339950	339980	339995	340001
	65	341116	340558	340177	339898	339688	339532	339425	339363	339345	339370	339435	339531	339643	339755	339850	339923	339972	340001	340015	340020	340018
	60	341145	340586	340205	339928	339721	339573	339478	339433	339437	339486	339570	339675	339782	339875	339947	339995	340023	340037	340040	340037	340031
[%]	55	341175	340616	340237	339963	339764	339627	339549	339525	339552	339621	339714	339814	339904	339973	340020	340047	340060	340062	340058	340051	340042
Parking cost increase [%]	50	341207	340650	340273	340007	339819	339699	339641	339641	339688	339766	339855	339937	340002	340047	340073	340085	340086	340081	340073	340063	340052
Parking co	45	341243	340688	340319	340063	339891	339792	339757	339777	339834	339907	339979	340037	340078	340101	340111	340112	340106	340097	340085	340074	340063
	40	341283	340735	340376	340136	339985	339909	339894	339924	339976	340033	340081	340114	340133	340141	340140	340133	340122	340110	340098	340086	340076
	35	341332	340794	340451	340231	340103	340046	340042	340068	340103	340136	340159	340171	340174	340170	340162	340150	340137	340124	340112	340102	340093
	30	341393	340871	340547	340350	340242	340196	340188	340197	340208	340216	340217	340213 3	340205	340194 3	340181 3	340167	40153 3	340141	340130	340121 3	340116 3
	25	41471 3	340968 3	340667 3	340490 3	340392 3	340343 3	340318 3			340276 3			340230 3	340214 3		340185 3	340172 3	340161 3	340152 3	340147 3	340145 3
	20	341570 3	341089 3	340808 3	340642 3	340541 3	340475 3	340427 3		340352 3			340272 3		340235 3		340206 3	340195 3	340187 3	340182 3	340181 3	340183 3
	15	341693 3	341232 3	340962 3	340792 3	340676 3	340586 3	340513 3		340399 3					340258 3		340233 3	340226 3	340221 3	340221 3	340224 3	340231 3
	10	341837 3	341387 3	341115 3	340930 3	340789 3	340675 3	340579 3		340438 3				340302 3	340287 3		340268 3	340264 3	340265 3	340268 3	340275 3	340286 3
	5	341995 3	341543 3.	341255 3		340880 3	340744 3	340632 3		340472 3	,	340382 3	340354 3	340335 3	340322 3.	340315 3	340312 3.	340313 3	340317 3	340324 3.	340334 3.	340346 3
	0	342153 3-	341686 3.	341374 3.	341140 3.	340953 3.	340800 3.	340677 3-	340580 3-	340507 3.	340454 3.	340416 3.	340391 3.	340376 3.	340367 3-	340364 3.	340365 3.	340369 3.	340376 3-	340385 3.	340396 3.	340408 3.
		Э	ά 2	10 	15 3.	20 3	25 3,	30 3.	35 3.	40 3	45 3 [.]	50 3.	55 3	60 3.	65 3.	70 3.	75 3 [.]	80 3.	85 3,	90 3.	95 3,	100 3.

STARS

Figure 41: CO₂ emissions cost [€] in Milan scenarios

	100	-1227	-688	-322	-53	151	309	429	519	584	629	658	673	676	665	638	591	518	420	303	177	58
	95	-1258	-716	-347	-76	131	290	412	502	567	610	636	646	640	615	570	499	403	286	162	43	-57
	90	-1289	-743	-372	-99	110	271	394	484	548	588	608	609	590	547	478	384	269	145	28	-72	-147
	85	-1319	-770	-396	-121	06	252	374	464	525	560	571	559	521	456	363	250	127	10	-88	-163	-214
	80	-1348	-797	-421	-144	68	231	353	440	495	522	521	490	430	341	229	108	8 <u>9</u>	-106	-180	-231	-263
	75	-1377	-824	-445	-167	46	208	327	410	457	471	452	399	315	207	87	-28	-126	-199	-249	-280	-296
	70	-1406	-850	-470	-191	21	181	296	370	405	402	361	284	181	64	-50	-147	-220	-269	-299	-314	-320
	65	-1435	-877	-496	-217	<i>L-</i>	149	256	318	336	311	246	150	38	-74	- 169	-242	-291	-320	-334	-339	-337
	60	-1464	-905	-524	-247	-40	108	203	248	244	195	111	9	-101	-194	-266	-314	-342	-356	-359	-356	-350
[%]	55	-1494	-935	-556	-282	-83	54	132	156	129	60	-33	-133	-223	-292	-339	-366	-379	-381	-377	-370	-361
arking cost increase [%]	50	-1526	-969	-592	-325	-138	- 18	40	40	<i>L-</i>	-85	-174	-256	-321	-366	-392	-404	-405	-400	-392	-382	-371
Parking co:	45	-1562	-1007	-638	-382	-210	-111	-76	-96	-153	-226	-298	-356	-397	-420	-430	-431	-425	-416	-404	-393	-382
	40	-1602	-1054	-695	-455	-304	-228	-213	-243	-295	-352	-400	-433	-452	-460	-459	-452	-441	-429	-417	-405	-395
	35	-1651	-1113	-770	-550	-422	-365	-361	-387	-422	-455	-478	-490	-493	-489	-481	-469	-456	-443	-431	-421	-412
	30	-1712	-1190	-866	-669	-561	-515	-507	-516	-527	-535	-536	-532	-524	-513	-500	-486	-472	-460	-449	-440	-435
	25	-1790	-1287	-986	-809	-711	-662	-637	-622	609-	-595	-580	-564	-549	-533	-518	-504	-491	-480	-471	-466	-464
	20	-1889	-1408	-1127	-961	-860	-794	-746	-706	-671	-640	-614	-591	-571	-554	-539	-525	-514	-506	-501	-500	-502
	15	-2012	-1551	-1281	-1111	-995	-905	-832	-770	-718	-677	-643	-616	-595	-577	-563	-552	-545	-540	-540	-543	-550
	10	-2156	-1706	-1434	-1249	-1108	-994	-898	-820	-757	-708	-671	-643	-621	-606	-594	-587	-583	-584	-587	-594	-605
	5	-2314	-1862	-1574	-1365	-1199	-1063	-951	-861	-791	-739	-701	-673	-654	-641	-634	-631	-632	-636	-643	-653	-665
	0	-2472	-2005	-1693	-1459	-1272	-1119	-996	-899	-826	- 773	-735	-710	-695	-686	-683	-684	-688	-695	-704	-715	-727
L		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
						1		[%	5] ə	seə.	incr	ţsc	១ ឱា	nine	ys.	ıвЭ						

Figure 42: Delta CO₂ emissions cost [€] in Milan (BAU – Rupture scenarios)

	100	5257	5262	5267	5273	5278	5282	5287	5291	5295	5299	5303	5306	5310	5313	5317	5321	5325	5330	5336	5341	5346
	95	5258	5263	5268	5273	5278	5283	5287	5292	5296	5300	5304	5307	5311	5315	5319	5324	5329	5334	5340	5345	5350
	90	5259	5264	5269	5274	5279	5284	5288	5292	5296	5300	5304	5308	5313	5317	5322	5327	5333	5339	5344	5349	5352
	85	5259	5265	5270	5275	5280	5284	5289	5293	5297	5301	5306	5310	5315	5320	5325	5331	5337	5343	5348	5352	5355
	80	5260	5265	5271	5276	5280	5285	5289	5294	5298	5303	5307	5312	5318	5323	5330	5336	5342	5346	5351	5354	5356
	75	5261	5266	5271	5276	5281	5286	5290	5295	5299	5304	5309	5315	5321	5328	5334	5340	5345	5349	5353	5355	5357
	70	5262	5267	5272	5277	5282	5286	5291	5296	5301	5306	5312	5319	5325	5332	5338	5344	5348	5352	5354	5356	5358
	65	5263	5268	5273	5278	5283	5287	5292	5297	5303	5309	5316	5323	5330	5336	5342	5347	5350	5353	5355	5357	5358
	60	5264	5269	5274	5279	5284	5289	5294	5300	5306	5313	5320	5327	5334	5340	5345	5349	5352	5354	5356	5358	5359
%	55	5265	5270	5275	5280	5285	5290	5296	5302	5309	5317	5324	5331	5338	5343	5347	5350	5353	5355	5357	5358	5359
Parking cost increase [%]	50	5266	5271	5276	5281	5287	5293	5299	5306	5314	5321	5329	5335	5341	5345	5349	5352	5354	5356	5357	5358	5359
arking cost	45	5267	5272	5277	5283	5289	5295	5303	5310	5318	5326	5333	5338	5343	5347	5350	5352	5354	5356	5357	5359	5360
<u>г</u>	40	5268	5273	5279	5285	5292	5299	5307	5315	5323	5330	5336	5341	5345	5348	5351	5353	5355	5357	5358	5359	5360
	35	5270	5275	5281	5288	5296	5303	5311	5319	5327	5333	5338	5343	5346	5349	5352	5354	5355	5357	5358	5360	5361
	30	272	5278	5284			5308		5323	5330	5335	5340	5344			5352			5357		5360	5361
	25	5274 5	5281 5	~					5327 5													5362 5
	20		5284 5						5329 5													5363 5
	15			5297 52					5331 55													5365 53
	10		5294 52						5333 53													5367 53
	5																					
	0			0 5306					5 5334													0 5369
		0 5295	5 5303						5335													0 5370
			L'	10	15	20	25		8 35 8								75	80	85	06	95	100

Figure 43: NMVOC emissions cost [€] in Milan scenarios

	100	138	133	127	122	117	112	108	103	66	95	92	88	85	81	78	74	69	65	59	54	49
	95	137	132	126	121	116	112	107	103	66	95	91	87	84	80	76	71	99	60	55	50	45
	06	136	131	126	121	116	111	107	102	98	94	06	86	82	78	73	67	62	56	51	46	42
	85	135	130	125	120	115	110	106	102	98	93	89	85	80	75	69	63	57	52	47	43	40
	80	134	129	124	119	114	110	105	101	97	92	87	83	77	71	65	59	53	48	44	41	39
	75	133	128	123	118	114	109	105	100	95	91	85	80	74	67	61	55	50	45	42	40	38
	70	133	128	123	118	113	108	104	66	94	88	83	76	69	63	56	51	47	43	40	38	37
	65	132	127	122	117	112	107	102	97	92	86	62	72	65	58	53	48	4	42	39	38	36
	60	131	126	121	116	111	106	101	95	89	82	75	68	61	55	50	46	43	40	39	37	36
[%] i	55	130	125	120	115	110	104	66	92	85	78	20	63	57	52	47	4	42	40	38	37	36
Parking cost increase	50	129	124	119	113	108	102	96	89	81	73	99	59	54	49	46	43	41	39	38	36	35
Parking c	45	128	123	117	112	106	66	92	8	76	69	62	56	52	48	45	42	40	39	37	36	35
	40	126	121	116	109	103	96	88	80	72	65	59	54	50	46	4	42	40	38	37	36	35
	35	125	119	113	107	66	91	83	75	68	62	57	52	49	46	43	41	39	38	36	35	34
	30	123	117	110	103	95	87	62	71	65	59	55	51	48	45	42	40	39	37	36	35	33
	25	121	114	107	66	60	82	75	68	62	57	53	50	47	4	42	40	38	37	35	34	32
	20	118	110	102	94	86	78	71	65	60	56	52	49	46	4	41	39	37	36	34	33	31
	15	114	106	97	89	81	75	69	63	59	55	51	48	45	43	41	38	37	35	33	31	30
	10	109	101	93	85	78	72	67	62	58	54	51	47	45	42	40	37	35	33	32	30	28
	5	104	96	88	81	75	70	65	61	57	53	50	46	44	41	38	36	34	32	30	28	26
	0						68															
		0	5	10	15	20	25			40 5695							75	80	85	90	95	100

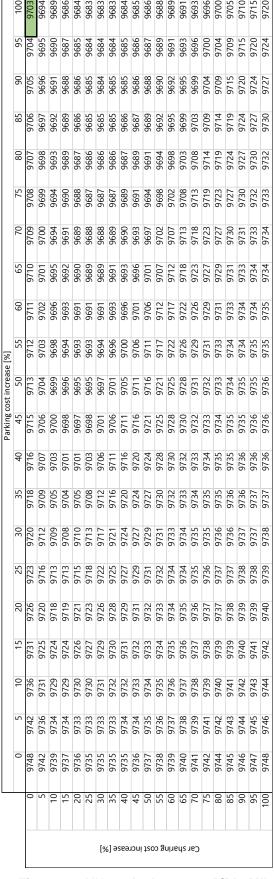
Figure 44: Delta NMVOC emissions cost [€] in Milan (BAU – Rupture scenarios)

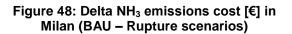
	100	265539	265989	266408	266794	267150	267481	267790	268079	268352	268608	268848	269075	269293	269507	269728	269966	270231	270526	270844	271165	271465
	95	265593	266039	266453	266834	267186	267514	267820	268109	268382	268640	268886	269123	269357	269596	269850	270128	270435	270763	271093	271401	271667
	06	265647	266087	266497	266874	267223	267547	267852	268141	268416	268679	268935	269188	269445	269717	270011	270332	270672	271013	271330	271604	271827
	85	265700	266135	266540	266913	267259	267582	267887	268177	268457	268730	269001	269277	269567	269878	270214	270569	270922	271251	271535	271766	271946
	80	265752	266182	266583	266953	267297	267619	267925	268220	268508	268796	269090	269398	269728	270081	270451	270820	271161	271457	271698	271886	272031
	75	265803	266229	266626	266994	267336	267659	267970	268273	268576	268886	269212	269559	269931	270318	270703	271060	271369	271622	271820	271973	272091
	20	265854	266276	266670	267036	267380	267707	268025	268342	268667	269009	269373	269762	270168	270570	270945	271270	271536	271745	271908	272033	272132
	65	265905	266324	266716	267083	267429	267764	268096	268435	268790	269170	269576	270000	270421	270814	271156	271438	271661	271835	271970	272076	272163
	60	265957	266374	266766	267135	267489	267837	268189	268558	268952	269374	269814	270254	270666	271027	271326	271565	271752	271898	272014	272107	272186
[%]	55	266010	266427	266821	267198	267564	267932	268314	268721	269156	269612	270070	270500	270881	271199	271455	271657	271816	271943	272046	272132	272205
Parking cost increase [%]	50	566067	266486	266887	267275	267661	268058	268478	268926	269396	269869	270318	270718	271055	271330	271549	271723	271863	271977	272071	272152	27223
FARKINGCO	45	266130 2	266554 2	2 29699	267374 2	67789 2	68223 2	68683 2	69166 2	269654 2	270119 2	70537 2	70895 2	271189 2	271426 2	271617 2	271772 2	71898 2	72004 2	72094 2	72172 2	272242 2
	40	266202 2	266637 2	2 63069 2	267504 2	267955 2	68430 2	68925 2	269426 2	2 9066 2	270341 2	270717 2	271030 2	271287 2	271496 2	271667 2	271809 2	71927 2	272028 2	272116 2	272194 2	272266 2
	35	66288 2	266742 2	267201 2	267672 2	68163 2	268673 2	269187 2	269680 2	270131 2	70523 2	70855 2	71131 2	271359 2	271548 2	71706 2	71840 2	71954 2	272053 2	272141 2	272221 2	2 392270
	30	66396 2	66876 2	67370 2	67882 2	68408 2	68936 2	69444 2	2 69908 2	270316 2	270664 2	270958 2	271205 2	271413 2	271590 2	271740 2	271869 2	271982 2	272082 2	272172 2	272256 2	272335 2
	25	266533 20	267048 20	267582 20	268129 20	268674 20	269196 20	269675 20	210096 20	270460 2			271262 2			271772 2	271901 2	272015 2		272212 2	272301 2	272387 2
	20	266708 26	267263 26	267832 26	268397 26	268937 26	269431 26	269867 26	70244 27	270570 27		271096 27	271310 27		271663 27	71809 27	271939 27	272056 27	272164 27	272265 27	272361 27	772455 27
	15	266925 26	267515 26	268103 26	268664 26	269176 26	269627 26	270018 26	270358 27	270654 27			1	271539 27	271704 27	271852 27	271986 27	272110 27	272224 27	272333 27	272437 27	272538 27
	10	267180 26	267790 26	268374 26	268907 26	269376 26	269783 26	270136 27	270446 27	270722 27				271586 27	271754 27	271907 27	272048 27	272178 27	272301 27	272417 27	272528 27	272636 27
	ß	267459 26	268065 26	268621 26	269112 26	269537 26	269905 26	270229 27	270519 27	270783 27			271454 27		271817 27	271977 27	272125 27	272263 27	272393 27	272516 27	272632 27	77742 27
	0	267739 26	268318 268	268833 268	269279 26	269665 269	270004 26	270308 27(270586 270	270844 27(271520 27	271715 27	271896 27	272063 27	272219 273	272363 27;		272624 273	272741 273	272851 273
		0 267	5 268	10 268	15 269	20 269	25 27C	0 270	35 27C	40 27C	45 271	50 271	55 271	60 271	65 271	70 272	75 272	80 272	85 272	90 272	95 272	100 272

Figure 45: NO_x emissions cost [€] in Milan scenarios

	100	8993	8543	8124	7738	7382	7051	6743	6453	6180	5924	5684	5457	5239	5025	4804	4566	4301	4006	3688	3367	3067
	95	8939	8493	8079	7698	7346	7018	6712	6423	6150	5892	5646	5409	5175	4937	4683	4404	4097	3769	3439	3131	2865
	90	8885	8445	8035	7658	7309	6985	6680	6391	6116	5853	5597	5344	5087	4815	4521	4200	3860	3519	3202	2928	2706
	85	8832	8397	7992	7619	7273	6950	6646	6355	6075	5803	5531	5255	4966	4654	4318	3964	3610	3281	2997	2766	2586
	80	8780	8350	7949	7579	7235	6913	6607	6312	6024	5736	5442	5134	4804	4451	4081	3713	3371	3075	2834	2646	2501
	75	8729	8303	7906	7538	7196	6873	6563	6259	5956	5646	5320	4973	4602	4214	3829	3472	3163	2910	2712	2560	2442
	70	8678	8256	7862	7496	7153	6826	6507	6190	5865	5523	5159	4770	4364	3962	3587	3263	2996	2787	2624	2499	2400
	65	8627	8208	7816	7449	7103	6768	6436	6098	5742	5362	4956	4532	4111	3718	3376	3094	2871	2698	2562	2456	2369
	60	8575	8158	7766	7397	7043	9699	6343	5974	5580	5159	4718	4278	3866	3505	3206	2967	2780	2634	2518	2425	2347
[%]	55	8522	8105	7711	7335	6968	6600	6218	5811	5376	4920	4463	4032	3651	3333	3077	2875	2716	2589	2486	2401	2327
'arking cost increase [%]	50	8465	8047	7646	7257	6871	6474	6054	5606	5136	4663	4214	3814	3477	3202	2983	2809	2669	2555	2461	2380	2309
Parking cc	45	8402	7978	7565	7158	6743	6309	5849	5366	4879	4413	3995	3638	3343	3106	2915	2760	2634	2528	2438	2360	2290
	40	8331	7895	7464	7028	6577	6102	5607	5106	4626	4191	3815	3502	3245	3036	2865	2724	2605	2504	2416	2338	2266
	35	8244	7790	7332	6860	6369	5859	5346	4852	4401	4009	3677	3401	3173	2984	2826	2693	2578	2479	2391	2311	2237
	30	8137	7656	7162	6650	6124	5596	5088	4624	4216	3868	3574	3327	3119	2943	2792	2663	2550	2450	2360	2276	2197
	25	7999	7484	6950	6403	5858	5336	4857	4436	4072	3762	3497	3270	3075	2906	2760	2631	2517	2415	2320	2231	2145
	20	7824	7270	6700	6135	5595	5101	4665	4288	3963	3681	3436	3222	3035	2870	2724	2594	2476	2368	2267	2171	2078
	15	7607	7017	6429	5868	5356	4905	4514	4175	3878	3617	3385	3178	2993	2828	2680	2546	2422	2308	2199	2095	1994
	10	7352	6742	6158	5625	5156	4749	4396	4086	3810	3562	3336	3132	2946	2778	2625	2484	2354	2231	2115	2004	1896
	2	7073	6467	5911	5420	4995	4627	4303	4013	3749	3507	3284	3078	2889	2715	2555	2407	2269	2139	2017	1900	1790
	0	6793	6215	5700	5253	4867	4528	4224	3946	3688	3447	3222	3012	2817	2636	2469	2313	2169	2034	1908	1791	1681
<u> </u>		0	Ś	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
								[%	5] ə	seə.	inci	120	ා පි	nine	ys.	ıвЭ						

Figure 46: Delta NO_x emissions cost [€] in Milan (BAU – Rupture scenarios)





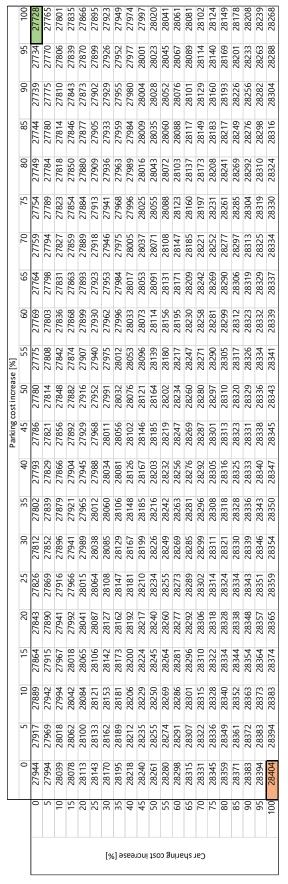


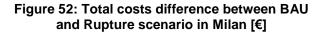
Figure 47: NH ₃ emissions cost [€] in Milan	۱
scenarios	

	100	43	51	56	59	61	62	62	62	61	60	59	58	56	54	52	49	45	41	36	30	25
	95	42	50	55	58	60	61	62	61	61	60	58	57	55	52	49	46	41	36	30	25	21
	90	40	49	54	58	59	61	61	61	60	59	57	55	53	50	46	41	36	31	26	21	18
	85	39	48	53	57	59	60	60	60	59	58	56	54	50	47	42	37	31	26	21	18	15
	80	38	47	53	56	58	59	59	59	58	56	54	51	47	42	37	31	26	22	18	15	14
	75	37	46	52	55	57	58	59	58	57	55	52	48	43	38	32	26	22	18	16	14	12
	70	36	45	51	54	56	57	57	57	55	52	48	4	38	32	27	22	18	16	14	12	12
	65	35	44	50	53	55	56	56	55	52	49	44	39	33	27	23	19	16	14	13	12	11
	60	34	43	49	52	54	55	54	52	49	45	39	34	28	23	19	16	14	13	12	11	10
[%	55	33	42	48	51	53	53	51	49	45	40	34	28	24	19	16	14	13	12	11	10	10
Parking cost increase [%]	50	32	41	46	49	51	50	48	45	40	34	29	24	20	17	15	13	12	1	10	10	10
arking cost	45	31	40	45	47	48	47	44	40	35	29	24	20	17	15	13	12	11	10	10	10	6
Pa	40	29	38	43	45	45	43	39	34	29	25	21	18	15	13	12	11	10	10	10	6	6
	35	27	36	40	41	40	38	34	29	25	21	18	16	14	12	11	11	10	6	6	6	8
	30	25	33	36	37	35	32	28	25	21	18	16	14	13	11	11	10	6	6	8	8	7
	25	22	30	32	32	30	27	24	21	18	16	14	13	12	11	10	6	6	8	8	7	9
	20	19	25	27	26	24	22	20	18	16	14	13	12	11	10	6	8	8	7	9	9	5
	15	14	20	21	21	20	18	17	15	14	13	12	11	10	6	8	7	7	9	5	4	e
	10	6	14	16	16	15	15	14	14	13	12	11	10	6	8	7	9	5	4	c	2	-
	5	m	6	11	12	12	12	12	12	12	11	10	6	8	7	9	5	4	2	-	0	-
	0	-2	4	7	8	10	10	11	11	10	10	6	80	9	5	4	£	2	0	, ,	-2	÷.
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
								[%	(] ə:	seə.	incr	ţsc	ා හි	nine	us.	IEJ						

STARS

Figure 49: PM_{2.5} emissions cost [€] in Milan scenarios

	100	826	789	753	720	688	659	631	605	580	557	535	514	494	473	453	430	405	376	346	315	286
	95	821	784	749	716	685	656	628	602	577	554	531	509	487	465	441	414	385	353	321	292	266
	90	815	779	744	712	681	652	625	599	574	550	526	503	479	453	425	394	362	329	298	272	250
	85	810	775	740	708	678	649	622	595	570	545	520	494	467	437	405	371	337	305	278	256	239
	80	805	770	736	704	674	645	618	591	565	538	511	482	451	417	382	346	314	285	262	244	230
	75	800	765	732	700	670	641	614	586	558	530	499	466	431	394	357	323	293	269	250	236	225
	70	795	761	727	969	666	637	608	579	549	518	483	446	408	369	333	302	277	257	242	230	220
	65	200	756	723	691	661	631	601	570	537	502	463	423	383	345	313	286	265	248	235	226	217
	60	785	751	718	686	655	624	592	558	521	482	440	398	359	324	296	273	256	242	231	222	215
ē [%]	55	780	746	713	680	648	615	580	542	501	458	415	374	338	308	283	264	249	238	228	220	213
Parking cost increase [%]	50	774	740	706	672	638	602	564	522	478	433	391	353	321	295	274	258	245	234	225	218	212
Parking cc	45	768	733	698	663	626	586	544	498	453	409	369	335	308	285	267	253	241	232	223	216	210
	40	761	725	688	650	609	566	520	473	428	387	351	322	298	278	263	249	238	229	221	214	207
	35	753	715	675	633	589	542	494	448	406	369	338	312	291	273	259	246	236	227	219	211	204
	30	742	702	659	613	565	516	469	426	388	355	328	305	286	269	255	244	233	224	216	208	201
	25	728	685	638	589	539	491	446	407	374	345	320	299	281	266	252	240	230	220	212	203	195
	20	711	664	614	562	513	468	428	393	363	337	314	295	277	262	249	237	226	216	207	198	189
	15	069	639	587	536	490	448	413	382	355	331	309	290	273	258	244	232	221	210	200	190	181
	10	665	612	560	512	470	433	401	373	348	325	304	286	269	253	239	226	214	202	192	181	171
	5	638	585	536	492	454	421	392	366	342	320	299	280	263	247	232	218	206	193	182	171	161
	0	610	561	515	476	442	411	384	359	336	314	293	274	256	239	224	209	196	183	171	160	150
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
								[%	5] ə:	seə.	ioni	tsc	ා පි	nine	ys.	ieD						



	95 100	649228 649135	649164 64908(649245 649169	649390 64932	649570 649508	649770 649714	649987 649934	650215 650165	650453 650402	650697 650642	650945 650880	651199 651118	651467 651358	651758 651608	652089 651883	652474 652198	652916 652569	653403 652999	653900 653476	654366 653965	654766 654423
	06	649319 64	649247 64	649319 64	649458 64	649631 64	649827 64	650041 64	650270 65	650511 65	650764 65	651028 65	651310 65	651617 65	651965 65	652364 65	652820 65	653319 65	653828 65	654304 65	654712 65	655038 65
	85	649409 6	649328 6	649393 6	649525 6	649693 6	649886 6	650099 6	650331 6	650581 6	650849 6	651140 6	651461 6	651824 6	652239 6	652710 6	653223 6	653745 6	654233 6	654652 6	654987 6	655241 6
	80	649497	649408	649466	649593	649757	649949	650165	650404	650669	650962	651292	651668	652098	652585	653113	653650	654152	654584	654929	655192	655386
	75	649585	649488	649540	649662	649825	650018	650241	650495	650784	651116	651499	651942	652443	652988	653541	654059	654506	654864	655137	655339	655488
	20	649671	649568	649615	649735	649898	650098	650335	650612	650939	651324	651774	652287	652847	653418	653953	654416	654789	655074	655286	655442	655559
	65	649758	649649	649693	649813	649983	650196	650455	650770	651148	651599	652119	652692	653278	653831	654313	654702	655002	655226	655392	655515	655610
	60	649846	649734	649777	649903	650084	650320	650615	650980	651424	651945	652525	653124	653695	654194	654602	654919	655157	655334	655467	655568	655649
se [%]	55	649937	649824	649872	620009	650212	650482	650827	651257	651771	652351	652959	653543	654061	654487	654822	655076	655267	655411	655522	655610	655682
Parking cost increase [%]	50	650034	649924	649983	650140	650377	650697	651106	651605	652179	652788	653381	653913	654358	654710	654982	655188	655346	655468	655565	655645	655713
Parking	45	650140	650041	650119	650310	650595	650977	651456	652015	652618	653213	653755	654214	654584	654874	655098	655271	655406	655514	655603	655679	655746
	40	650263	650182	650293	650530	650878	651329	651867	652456	653047	653591	654060	654445	654751	654993	655183	655333	655455	655555	655641	655716	655786
	35	650410	650360	650517	650816	651232	651743	652312	652890	653429	653901	654295	654616	654874	655081	655249	655386	655500	655598	655683	655762	655836
	30	650593	650589	650806	651173	651649	652191	652749	653277	653745	654141	654471	654743	654967	655152	655306	655436	655548	655647	655736	655821	655903
	25	650827	650882	651167	651594	652101	652634	653142	653598	653990	654322	654603	654840	655042	655214	655362	655490	655604	655708	655804	655898	655992
	20	651124	651247	651591	652051	652549	653033	653469	653849	654176	654459	654705	654921	655110	655276	655423	655555	655675	655787	655894	656000	656107
	15	651493	651676	652053	652505	652955	653366	653727	654042	654320	654568	654793	654996	655180	655346	655497	655636	655766	655889	656010	656129	656249
	10	651928	652144	652514	652918	653296	653632	653928	654192	654436	654663	654876	655075	655260	655432	655591	655741	655882	656019	656153	656285	656416
	5	652402	652612	652935	653267	653570	653840	654086	654317	654539	654756	654965	655167	655358	655539	655710	655872	656027	656176	656321	656461	656597
	0	652879	653042	653295	653551	653788	654008	654220	654431	654643	654857	655070	655279	655481	655673	655857	656031	656197	656355	656505	656647	656782
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	60	95	100
								[%	6] ə	seə.	incr	tsc	io 8	nine	eys.	ieD						

Figure 51: Total emissions costs [€] and identification of the Rupture scenario in Milan

	100	8773	8827	8738	8585	8399	8193	7973	7742	7505	7266	7027	6790	6550	6299	6024	5709	5339	4908	4431	3942	3484
	95	8680	8743	8663	8517	8338	8137	7921	7692	7454	7211	6963	6708	6441	6149	5818	5434	4991	4505	4007	3541	3141
	90	8588	8661	8588	8449	8276	8080	7866	7638	7396	7144	6879	6598	6290	5943	5543	5087	4588	4080	3604	3195	2869
	85	8498	8579	8514	8382	8214	8021	7808	7576	7327	7058	6768	6446	6084	5668	5197	4684	4162	3675	3256	2921	2666
	80	8410	8499	8441	8314	8150	7958	7743	7503	7239	6945	6615	6240	5809	5323	4794	4257	3755	3324	2978	2716	2521
	75	8323	8419	8367	8245	8083	7889	7667	7413	7123	6791	6408	5966	5464	4919	4366	3848	3402	3043	2770	2568	2420
	70	8236	8339	8292	8173	8009	7809	7573	7295	6968	6583	6134	5620	5060	4490	3954	3491	3118	2833	2621	2465	2348
	65	8149	8258	8214	8094	7924	7712	7452	7138	6759	6309	5788	5216	4629	4076	3595	3205	2905	2681	2516	2392	2297
	60	8061	8174	8130	8005	7823	7588	7293	6927	6483	5962	5383	4783	4213	3713	3305	2989	2751	2574	2441	2339	2258
[%	55	0267	8083	8035	7899	7695	7426	7080	6650	6136	5556	4948	4364	3847	3420	3086	2832	2641	2497	2386	2298	2225
Parking cost increase [%]	50	7874	7983	7924 8	1767	7530	7211	5802	5302 (5729 (5119	1526	3994	3550	3197	2925	2719	2561	2439	2342	2263	2194
rking cost	45	767	Ċ									4152 4										2161
Pa	40	645 7				029 7	_	6040 (4316 4	Ì			2915 3					267 2	191 2	122 2
	35	-	-	~	~	5675 7				Ì					2826 2					(1		2071 2
	30	314 7	7 7 7	101 7	5734 7	Ū	Ū	5158 5			3766 4				2756 2				261 2	2171 2	087 2	004 2
	25	081 7.	025 7.	6740 7	6314 6	5806 6	5274 5		4309 4	3917 4	3585 3	3305 3.		2865 2		2546 2	2417 2.	2303 2	200 2	103 2	2009 21	1915 21
	20	-	-							,	,	3202 33								013 27		
	15											3115 32										
	10							Ì				3032 31										492 16
	5											2942 30									446 16	310 14
	0	29 5505		Ì																	-	126 13
		0 50	5 48(50 2837										-
										7	-	- 1										1
								[%	6] ə	seə.	incr	tsc	ා වි	nine	ys.	ieC						

100	199467	199307	199157	199017	198891	198778	198677	198589	198513	198447	198391	198343	198303	198270	198243	198221	198203	198189	198178	198170	198164
95	199471	199310	199159	199020	198893	198780	198679	198591	198514	198449	198392	198345	198305	198272	198244	198222	198204	198190	198179	198170	198164
90	199474	199313	199162	199023	198896	198782	198681	198593	198516	198450	198394	198346	198306	198273	198245	198223	198205	198191	198180	198171	198165
85	199477	199316	199165	199025	198898	198784	198683	198595	198518	198452	198395	198347	198307	198274	198246	198224	198206	198192	198180	198172	198166
80	199480	199319	199167	199027	198900	198786	198685	198596	198519	198453	198396	198349	198308	198275	198247	198225	198207	198192	198181	198173	198166
75	199483	199322	199170	199030	198902	198788	198687	198598	198521	198455	198398	198350	198309	198276	198248	198226	198208	198193	198182	198173	198167
70	199486	199325	199173	199032	198905	198790	198689	198600	198523	198456	198399	198351	198311	198277	198249	198227	198208	198194	198183	198174	198167
65	199490	199328	199175	199034	198907	198792	198691	198601	198524	198457	198400	198352	198312	198278	198250	198228	198209	198195	198183	198174	198168
60	199492	199330	199178	199037	198909	198794	198692	198603	198526	198459	198402	198353	198313	198279	198251	198228	198210	198195	198184	198175	198168
55	199495	199333	199180	199039	198911	198796	198694	198605	198527	198460	198403	198355	198314	198280	198252	198229	198211	198196	198185	198176	198169
50	199498	199336	199182	199041	198913	198798	198696	198606	198529	198462	198404	198356	198315	198281	198253	198230	198212	198197	198185	198176	198170
45	199501	199338	199185	199043	198915	198800	198697	198608	198530	198463	198406	198357	198316	198282	198254	198231	198212	198197	198186	198177	198170
40	199504	199341	199187	199045	198917	198801	198699	198609	198531	198464	198407	198358	198317	198283	198255	198232	198213	198198	198186	198177	198171
35	199507	199343	199189	199047	198919	198803	198701	198611	198533	198465	198408	198359	198318	198284	198256	198232	198214	198199	198187	198178	198171
90 M	199509	199346	199192	199050	198921	198805	198702	198612	198534	198467	198409	198360	198319	198285	198256	198233	198214	198199	198188	198178	198172
25	199512	199348	199194	199052	198922	198807	198704	198614	198536	198468	198410	198361	198320	198286	198257	198234	198215	198200	198188	198179	198172
20	199514	199350	. 96166	199054	198924	198808	198705	198615	198537	198469	198411	198362	198321	198287	198258	198235	198216	198201	198189	. 6/1861	198173
15	199517	199353 7	199198	199055 7	198926	198810	198707	198617	198538	198470	198412	198363	198322	198287	198259	198235	198216	198201	198189	198180	198173
10	199519	199355	199200	199057	198928	198812	198709	198618	198539	198472	198413	198364	198323	198288	198260	198236	198217	198202	198190	198181	198173
5	199522	199357	199202	199059	198930	198813	198710	198619	198541	198473	198415	198365	198324	198289	198260	198237	198218	198202	198190	198181	198174
0	199524	. 632661	199204	199061	198931	198815	198711	198621	198542	198474 7	198416	198366	198325 7	198290	198261	198238	198218	198203	198191	198181	198174
	0	5	10	15 1	20 1	25 1	30 1	35 1	40	45 1	50 1	55 1	60 1	65 1	, 10	75 1	80	85 1	90	95 1	100

Figure 53: CO₂ emissions cost [€] in Turin scenarios

	100	-1031	-871	-721	-581	-455	-342	-241	-153	-77	-11	45	93	133	166	193	215	233	247	258	266	272
	95	-1034	-874	-723	-584	-457	-344	-243	-155	-78	-12	4	91	131	164	192	214	232	246	257	266	272
	06	- 1038	-877	-726	-586	-460	-346	-245	-157	-80	-14	42	06	130	163	191	213	231	245	256	265	271
	85	1041	-880	-729	-589	-462	-348	-247	-159	-82	-16	41	89	129	162	190	212	230	244	256	264	271
	80	Ľ				-464																
	75	1				-466																
	70					-469																
	65	Ľ				-471 .																
	60					-473 -																
	55	Ľ				-475																
crease [%]		1				-477																
arking cost increase [%		ľ				-479 -4																
Park		ľ																				
	40	1				-481																
	35	-1071	-907	-753	-611	-483	-367	-265	-175	-97	-29	28	11	118	152	180	204	222	237	249	258	265
	30					-485																
	25	-1076	-912	-758	-615	-486	-371	-268	-178	66-	-32	26	75	116	150	179	202	221	236	248	257	264
	20	-1078	-914	-760	-617	-488	-372	-269	-179	-101	-33	25	74	115	150	178	201	220	235	247	257	264
	15	-1081	-917	-762	-619	-490	-374	-271	-181	-102	-34	24	73	114	149	177	201	220	235	247	256	263
	10	-1083	-919	-764	-621	-492	-376	-272	-182	-103	-35	23	72	113	148	176	200	219	234	246	256	263
	5	-1086	-921	-766	-623	-493	-377	-274	-183	-105	-37	21	71	112	147	176	199	218	234	246	255	262
	0					-495																
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	06	95	00
											incr											<u> </u>

Figure 54: Delta CO₂ emissions cost [€] in Turin (BAU – Rupture scenarios)

	100	2585	2588	2592	2595	2597	2600	2602	2604	2606	2608	2610	2611	2613	2614	2615	2616	2617	2618	2619	2620	2621
	95	2585	2588	2592	2595	2597	2600	2602	2604	2606	2608	2610	2611	2613	2614	2615	2616	2617	2618	2619	2620	2621
	90	2585	2589	2592	2595	2597	2600	2602	2604	2606	2608	2610	2611	2613	2614	2615	2616	2617	2618	2619	2620	2621
	85	2585	2589	2592	2595	2598	2600	2602	2604	2606	2608	2610	2611	2613	2614	2615	2616	2617	2618	2619	2620	2621
	80	2585	2589	2592	2595	2598	2600	2602	2604	2606	2608	2610	2611	2613	2614	2615	2616	2617	2618	2619	2620	2621
	75	2585	2589	2592	2595	2598	2600	2602	2604	2606	2608	2610	2611	2613	2614	2615	2616	2618	2619	2619	2620	2621
	70	2585	2589	2592	2595	2598	2600	2602	2604	2606	2608	2610	2611	2613	2614	2615	2616	2618	2619	2619	2620	2621
	65	2585	2589	2592	2595	2598	2600	2602	2604	2606	2608	2610	2611	2613	2614	2615	2616	2618	2619	2619	2620	2621
	60	2585	2589	2592	2595	2598	2600	2602	2605	2606	2608	2610	2611	2613	2614	2615	2616	2618	2619	2620	2620	2621
6]	55	2585	2589	2592	2595	2598	2600	2603	2605	2606	2608	2610	2611	2613	2614	2615	2617	2618	2619	2620	2620	2621
arking cost increase [%]	50	2585	2589	2592	2595	2598	2600	2603	2605	2607	2608	2610	2611	2613	2614	2615	2617	2618	2619	2620	2620	2621
Parking cost	45	2586	2589	2592	2595	2598	2600	2603	2605	2607	2608	2610	2611	2613	2614	2615	2617	2618	2619	2620	2620	2621
	40	2586	2589	2592	2595	2598	2600	2603	2605	2607	2608	2610	2611	2613	2614	2615	2617	2618	2619	2620	2620	2621
	35	2586	2589	2592	2595	2598	2600	2603	2605	2607	2608	2610	2612	2613	2614	2615	2617	2618	2619	2620	2620	2621
	30	2586	2589	2593	2595	2598	2601	2603	2605	2607	2608	2610	2612	2613	2614	2615	2617	2618	2619	2620	2620	2621
	25	2586	2589	2593	2595	2598	2601	2603	2605	2607	2608	2610	2612	2613	2614	2615	2617	2618	2619	2620	2620	2621
	20	2586	2589	2593	2596	2598	2601	2603	2605	2607	2608	2610	2612	2613	2614	2616	2617	2618	2619	2620	2620	2621
	15	2586	2589	2593	2596	2598	2601	2603	2605	2607	2608	2610	2612	2613	2614	2616	2617	2618	2619	2620	2621	2621
	10	2586	2590	2593	2596	2598	2601	2603	2605	2607	2609	2610	2612	2613	2614	2616	2617	2618	2619	2620	2621	2621
	5	2586	2590	2593	2596	2598	2601	2603	2605	2607	2609	2610	2612	2613	2614	2616	2617	2618	2619	2620	2621	2621
	0	2586	2590	2593	2596	2598	2601	2603	2605	2607	2609	2610	2612	2613	2614	2616	2617	2618	2619	2620	2621	2621
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	06	95	100
								[%	5] ə	seə.	incr	ţsc	10 B	nine	ys.	ıвЭ						

Figure 55: NMVOC emissions cost [€] in Turin scenarios

	100	50	46	43	40	37	35	33	30	29	27	25	24	22	21	19	18	17	16	15	14	14
	95	50	46	43	40	37	35	32	30	28	27	25	23	22	21	19	18	17	16	15	14	14
	06	50	46	43	40	37	35	32	30	28	27	25	23	22	21	19	18	17	16	15	14	14
	85	50	46	43	40	37	35	32	30	28	27	25	23	22	21	19	18	17	16	15	14	14
	80	50	46	43	40	37	35	32	30	28	27	25	23	22	21	19	18	17	16	15	14	13
	75	50	46	43	40	37	35	32	30	28	27	25	23	22	21	19	18	17	16	15	14	13
	20	49	46	43	40	37	35	32	30	28	27	25	23	22	21	19	18	17	16	15	14	13
	65	49	46	43	40	37	34	32	30	28	26	25	23	22	21	19	18	17	16	15	14	13
	60	49	46	42	40	37	34	32	30	28	26	25	23	22	21	19	18	17	16	15	14	13
[%]	55	49	46	42	39	37	34	32	30	28	26	25	23	22	20	19	18	17	16	15	14	13
Parking cost increase [%]	50	49	46	42	39	37	34	32	30	28	26	25	23	22	20	19	18	17	16	15	14	13
Parking co	45	49	46	42	39	37	34	32	30	28	26	25	23	22	20	19	18	17	16	15	14	13
	40	49	45	42	39	37	34	32	30	28	26	25	23	22	20	19	18	17	16	15	14	13
	35	49	45	42	39	37	34	32	30	28	26	25	23	22	20	19	18	17	16	15	14	13
	30	49	45	42	39	37	34	32	30	28	26	25	23	22	20	19	18	17	16	15	14	13
	25	49	45	42	39	36	34	32	30	28	26	25	23	22	20	19	18	17	16	15	14	13
	20	49	45	42	39	36	34	32	30	28	26	25	23	22	20	19	18	17	16	15	14	13
	15	49	45	42	39	36	34	32	30	28	26	25	23	22	20	19	18	17	16	15	14	13
	10	49	45	42	39	36	34	32	30	28	26	24	23	22	20	19	18	17	16	15	14	13
	5	49	45	42	39	36	34	32	30	28	26	24	23	22	20	19	18	17	16	15	14	13
	0	49	45	42	39	36	34	32	30	28	26	24	23	22	20	19	18	17	16	15	14	13
L		0	Ŋ	10	15	20	25										75	80	85	90	95	100
								[%	6] Ə	seə.	incr	ţsc	10 B	nina	eys.	ıвЭ						

	100	145483	145816	146116	146388	146635	146860	147065	147253	147425	147583	147729	147863	147987	148101	148206	148303	148393	148476	148553	148624	1 40,000
	95	145489	145821	146121	146392	146639	146863	147068	147256	147428	147586	147731	147865	147989	148102	148208	148305	148395	148478	148554	148626	1 40700
	06	145495	145826	146125	146396	146642	146867	147072	147259	147431	147589	147734	147867	147991	148104	148209	148306	148396	148479	148556	148627	1 40.00
	85	145500	145831	146130	146400	146646	146870	147075	147262	147434	147591	147736	147870	147993	148106	148211	148308	148397	148480	148557	148628	1 10501
	80	145505	145836	146134	146404	146650	146874	147078	147265	147436	147594	147738	147872	147995	148108	148213	148309	148399	148482	148558	148629	1 1000
	75	145511	145841	146139	146408	146654	146877	147081	147268	147439	147596	147741	147874	147997	148110	148214	148311	148400	148483	148559	148630	1 10606
	70	145516	145845	146143	146412	146657	146880	147084	147271	147442	147599	147743	147876	147999	148112	148216	148312	148402	148484	148560	148631	110607
	65	145521	145850	146147	146416	146661	146884	147087	147273	147444	147601	147745	147878	148000	148113	148218	148314	148403	148485	148562	148632	1 10600
	60	145526	145854	146151	146420	146664	146887	147090	147276	147447	147603	147747	147880	148002	148115	148219	148315	148404	148487	148563	148633	110600
[%]	55	145531	145859	146155	146424	146668	146890	147093	147279	147449	147606	147749	147882	148004	148117	148221	148317	148406	148488	148564	148634	110600
Parking cost increase [%]	50	45536	45863	46159	146427	146671	46893	147096	47282	147452	47608	147752	47884	48006	48118	48222	48318	48407	48489	148565	48635	002011
Parking cos	45	45540 1	45868 1	46163 1	146431 1	46675 1	46896 1	47099 1	47284 1	47454 1	147610 1	147754 1	47886 1	148008 1	48120 1	48224 1	148320 1	48408 1	148490 1	148566 1	48636 1	10701
	40	45545 1	145872 1	46167 1	46435 1	46678 1	46899 1	47102 1	147287 1	47456 1	147612 1	147756 1	47888 1	148009 1	48122 1	148225 1	148321 1	48409 1	148491 1	48567 1	148637 1	1 20781
	35	45549 14	45876 1-	46171 14	46438 14	46681 14	46902 14	47104 1-	147289 14	47459 14	147614 14	147758 14	47889 14	48011 14	48123 14	48227 14	48322 14	48411 14	148492 14	48568 14	48638 14	18702 1,
	30	45554 14	45880 14	46175 14	46442 14	46684 14	46905 14	47107 14	47292 14	147461 14	147617 14	147760 14	147891 14	48013 14	48125 14	48228 14	48323 14	148412 14	148493 14	148569 14	48639 14	1870/1
	25	145558 14	145884 14	146178 14	146445 14	146687 14	146908 14	147110 14	147294 14	147463 14	147619 14	147761 14	147893 14	148014 14	148126 14	148229 14	148325 14	148413 14	148495 14	148570 14	148640 14	1 18 705 1 1
	20	145563 145	145888 145	146182 146	146448 146	146690 146	146911 146	47112 147	147297 147	147466 147	147621 147	147763 147	147895 147	148016 148	48128 148	148231 148	148326 148	48414 148	148496 148	148571 148	148641 148	14205 145
	15	145567 145	145892 145	146185 146	146452 146	146693 146	146914 146	147115 147	147299 147	147468 147	147623 147	147765 147	147896 147	148017 148	148129 148	148232 148	148327 148	148415 148	148497 148	148572 148	148642 148	148706 148
	10		145896 145	146189 146	146455 146	146696 146	146916 146	147117 147		147470 147	147625 147	147767 147	147898 147	148019 148	148130 148	148233 148	148328 148	148416 148		148573 148	148642 148	1/18/07
	5	575 14557			Ċ		`		304 147301		·	·		`	· ·		·		148498 148498		·	ľ
	0	79 145575	03 145899	96 146192	61 146458	02 146699	22 146919	22 147120	06 147304	74 147472	29 147627	71 147769	01 147900	22 148020	33 148132	36 148235	31 148330	18 148417	00 148499	75 148574	44 148643	118708
		0 145579	5 145903	10 146196	15 146461	20 146702	25 146922	30 147122	35 147306	40 147474	45 147629	50 147771	55 147901	60 148022	65 148133	70 148236	75 148331	80 148418	85 148500	90 148575	95 148644	1 10700
				-	-	2	2							arin @			-	8	8	6	6	100

Figure 57: NO_x emissions cost [€] in Turin scenarios

	100	4188	3856	3556	3284	3037	2812	2607	2419	2246	2088	1943	1809	1685	1571	1466	1368	1278	1195	1118	1047	981
	95	4183	3851	3551	3279	3033	2808	2603	2416	2243	2085	1940	1806	1683	1569	1464	1367	1277	1194	1117	1046	980
	06	4177	3846	3546	3275	3029	2805	2600	2413	2241	2083	1938	1804	1681	1567	1462	1365	1275	1193	1116	1045	979
	85	4172	3841	3542	3271	3025	2801	2597	2410	2238	2080	1935	1802	1679	1565	1460	1364	1274	1191	1115	1044	978
	80	4166	3836	3537	3267	3021	2798	2594	2407	2235	2078	1933	1800	1677	1563	1459	1362	1273	1190	1113	1043	977
	75	4161	3831	3533	3263	3018	2794	2590	2404	2233	2075	1931	1798	1675	1562	1457	1361	1271	1189	1112	1041	976
	70	4156	3826	3529	3259	3014	2791	2587	2401	2230	2073	1929	1796	1673	1560	1456	1359	1270	1187	1111	1040	975
	65	4151	3822	3524	3255	3011	2788	2584	2398	2227	2071	1926	1794	1671	1558	1454	1358	1268	1186	1110	1039	974
	60	4146	3817	3520	3251	3007	2785	2581	2395	2225	2068	1924	1792	1669	1556	1452	1356	1267	1185	1109	1038	973
[%]	55	4141	3813	3516	3248	3004	2781	2578	2393	2222	2066	1922	1790	1667	1555	1451	1355	1266	1184	1108	1037	972
'arking cost increase [%]	50	4136	3808	3512	3244	3000	2778	2575	2390	2220	2064	1920	1788	1666	1553	1449	1353	1265	1183	1107	1036	971
Parking cos	45	4131	3804	3508	3240	2997	2775	2573	2387	2217	2061	1918	1786	1664	1552	1448	1352	1263	1181	1106	1035	970
	40	4127	3800	3504	3237	2994	2772	2570	2385	2215	2059	1916	1784	1662	1550	1446	1351	1262	1180	1104	1034	696
	35	4122	3796	3501	3233	2990	2769	2567	2382	2213	2057	1914	1782	1661	1548	1445	1349	1261	1179	1103	1033	696
	30	4118	3791	3497	3230	2987	2766	2564	2380	2210	2055	1912	1780	1659	1547	1444	1348	1260	1178	1102	1033	968
	25	4113	3787	3493	3227	2984	2763	2562	2377	2208	2053	1910	1778	1657	1545	1442	1347	1259	1177	1102	1032	967
	20	4109	3783	3490	3223	2981	2761	2559	2375	2206	2051	1908	1777	1656	1544	1441	1346	1257	1176	1101	1031	996
	15	4105	3780	3486	3220	2978	2758	2557	2373	2204	2049	1906	1775	1654	1542	1439	1344	1256	1175	1100	1030	965
	10	4100	3776	3483	3217	2975	2755	2554	2370	2202	2047	1904	1773	1653	1541	1438	1343	1255	1174	1099	1029	965
	5	4096	3772	3479	3214	2972	2752	2552	2368	2200	2045	1903	1772	1651	1540	1437	1342	1254	1173	1098	1028	964
	0	4092	3768	3476	3210	2969	2750	2549	2366	2197	2043	1901	1770	1650	1538	1436	1341	1253	1172	1097	1027	963
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
								[%	6]ə	seə.	incr	ţsc	5 S	uine	eys.	reJ						

Figure 58: Delta NO_x emissions cost [€] in Turin (BAU – Rupture scenarios)

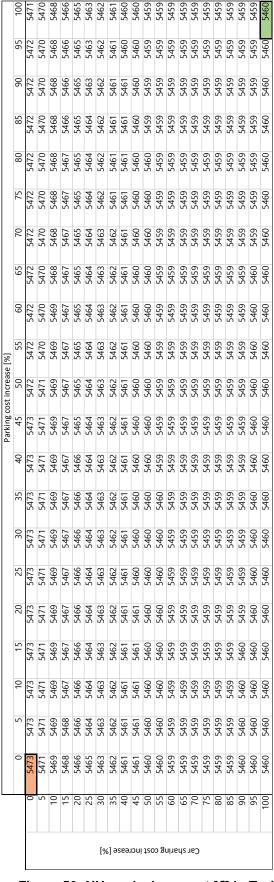
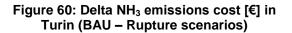
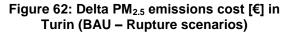



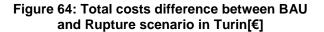
Figure 59: NH₃ emissions cost [€] in Turin scenarios

	100	0	2	4	5	7	8	6	10	1	12	12	13	13	13	13	13	13	13	12	12	12
	95	0	2	4	5	7	8	6	10	11	12	12	13	13	13	13	13	13	13	12	12	12
				_									_							_	_	
	60			7		-	ω	0,	10	1	12	12	12	13	10	<u>1</u>	<u>(1</u>	<u>1</u>	10	12	12	12
	85	0	2	m	S	7	∞	6	10	7	12	12	12	13	13	13	13	13	13	12	12	12
	80	0	2	m	5	7	ω	6	10	11	12	12	12	13	13	13	13	13	13	12	12	12
	75	0	-	m	2	7	8	6	10	11	12	12	12	13	13	13	13	13	12	12	12	12
	70	0	-	m	5	9	80	6	10	11	11	12	12	13	13	13	13	13	12	12	12	12
		_	_	~	10	5	~	•	0	_	_	0	0	~	~	~	~	~				01
	65	Ϋ́,			.,	Ŭ	~	0,	1	÷	÷	12	12	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	12	1	12	12
	60	Ţ	-	m	S	9	∞	6	10	7	1	12	12	12	13	13	13	13	12	12	12	12
[%]	55	Ţ	-	m	5	9	ω	6	10	11	11	12	12	12	13	13	13	13	12	12	12	12
Parking cost increase [%]	50	-	-	m	5	9	8	6	10	11	11	12	12	12	13	13	13	12	12	12	12	12
ing cost i	45	<u>-</u>	-	m	5	9	80	6	10	11	11	12	12	12	13	13	13	12	12	12	12	12
Park	40	1	-	e	4	9	7	6	0	-	-	2	2	2	2	e	e	2	2	2	2	12
		T							÷	-	-	-	-	-	-	-	-	-	-	-	-	-
	35	ī	-	m	4	9	7	6	10	10	11	12	12	12	12	13	12	12	12	12	12	12
	30	ī	-	m	4	9	7	6	10	10	11	12	12	12	12	12	12	12	12	12	12	12
	25	5	-	m	4	9	7	6	10	10	1	12	12	12	12	12	12	12	12	12	12	12
	20	5	-	2	4	9	7	ω	10	10	11	12	12	12	12	12	12	12	12	12	12	12
	15	<u>-</u>	0	2	4	9	7	8	6	0	1	2	2	2	2	2	2	2	2	2	2	2
	10	-2	0	2	4	9	7	8	6	10	11	11	12	12	12	12	12	12	12	12	12	12
	5	-2	0	2	4	9	7	∞	6	10	11	1	12	12	12	12	12	12	12	12	12	12
	0	-2	0	2	4	9	7	∞	6	10	11	11	12	12	12	12	12	12	12	12	12	12
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	00
								[%	6] ə	seə.	incr) tsc	ා පි	u'ne	eys.	ısƏ						



	35 40	5711 15711 1	15742 15741 1	15769 15769 1	15794 15794 1	15816 15816 1	15837 15837 1	5856 15856 15855 1	5873 15873 15873 1	5889 15889 15889 1	5904 15903 15903 1	15917 15917 15917 1	5929 15929 15929 1	5941 15941 15941 1	5951 15951 15951 1	5961 15961 15961 1	5970 15970 15970 1	5979 15979 15979 1	5987 15986 15986 1	5994 15994 15994 1	6001 16000 16000 1	6007 16007 16007 1
			15741	15769	15794	15816	15837	15855	15873	15889	15903	15917	15929	15941	15951	15961	15970	15979	15986	15994 1	16000	16007
	45 50	10 15710 1	15741 15740 157	15768 15768 157	15793 15793 157	15816 15815 158	15836 15836 158	15855 15855 158	15872 15872 158	15888 15888 158	15903 15903 159	15916 15916 159	15929 15929 159	15940 15940 159	15951 15951 15951	15961 15961 15961	15970 15970 159	15978 15978 159	15986 15986 159	5993 15993 159	6000 16000 160	16006 16006 160
e e	55 60 6	5709 15709 15708	15740 15740 15739	15767 15767 15767	15792 15792 15792	15815 15815 15814	15836 15835 15835	15855 15854 15854	15872 15872 15871	15888 15888 15887	5902 15902 15902	15916 15916 15916	15928 15928 15928	15940 15940 15940	351 15950 15950	961 15960 15960	15970 15970 15969	15978 15978 15978	15986 15986 15986	5993 15993 15993	6000 16000 16000	16006 16006 16006
	65 70 75	08 15708 15707	9 15739 15738	57 15766 15766	15791 15791	4 15814 15814	15835 15834	4 15854 15853	1 15871 15871	37 15887 15887	15902 15902	6 15915 15915	28 15928 15928	0 15939 15939	0 15950 15950	0 15960 15960	59 15969 15969	8 15978 15978	36 15986 15985	3 15993 15993	00 16000 16000	16006 16006 16006
	80 85	15707 15706	15738 15737	15765 15765	15790 15790	15813 15813	15834 15834	15853 15853	15871 15870	15887 15886	15901 15901	15915 15915	15927 15927	15939 15939	15950 15950	15960 15960	15969 15969	15977 15977	15985 15985	15993 15993	15999 15999	16006 16006
	90 95	15706 15705	15737 15736	15764 15764	15790 15789	15813 15812	15833 15833	15852 15852	15870 15870	15886 15886	15901 15900	15914 15914	15927 15927	15939 15938	15949 15949	15959 15959	15969 15968	15977 15977	15985 15985	15992 15992	15999 15999	16006 16005

Figure 61: PM_{2.5} emissions cost [€] in Turin scenarios


	100	398	367	339	314	291	270	251	233	217	203	189	176	165	154	144	134	126	118	111	104	97
	95	398	367	339	314	291	270	251	233	217	202	189	176	164	154	144	134	126	118	110	104	97
	06	397	366	338	313	290	269	250	233	217	202	188	176	164	153	143	134	126	118	110	103	97
	85	396	366	338	313	290	269	250	233	216	202	188	176	164	153	143	134	125	118	110	103	97
	80	396	365	337	312	289	269	250	232	216	201	188	175	164	153	143	134	125	117	110	103	97
	75	395	365	337	312	289	268	249	232	216	201	188	175	164	153	143	134	125	117	110	103	97
	70	395	364	337	311	289	268	249	232	216	201	187	175	163	153	143	134	125	117	110	103	97
	65	394	364	336	311	288	268	249	231	215	201	187	175	163	152	143	133	125	117	110	103	97
	60	394	363	336	311	288	267	248	231	215	200	187	174	163	152	142	133	125	117	110	103	97
[%]	55	393	363	335	310	288	267	248	231	215	200	187	174	163	152	142	133	125	117	109	103	96
t increase	50	393	362	335	310	287	267	248	231	215	200	187	174	163	152	142	133	124	117	109	103	96
Parking cost increase [%]	45	392	362	334	310	287	266	248	230	214	200	186	174	162	152	142	133	124	117	109	103	96
	40	392	361	334	309	287	266	247	230	214	200	186	174	162	152	142	133	124	116	109	102	96
	35	391	361	334	309	286	266	247	230	214	199	186	174	162	151	142	133	124	116	109	102	96
	30	391	361	333	309	286	265	247	229	214	199	186	173	162	151	141	132	124	116	109	102	96
	25	391	360	333	308	286	265	246	229	213	199	186	173	162	151	141	132	124	116	109	102	96
	20	390	360	333	308	285	265	246	229	213	199	185	173	162	151	141	132	124	116	109	102	96
	15	390	359	332	307	285	265	246	229	213	199	185	173	161	151	141	132	124	116	109	102	96
	10	389	359	332	307	285	264	246	229	213	198	185	173	161	151	141	132	124	116	109	102	96
	S	389	359	331	307	284	264	245	228	213	198	185	172	161	151	141	132	123	116	108	102	96
	0	388	358	331	307	284	264	245	228	212	198	185	172	161	150	141	132	123	116	108	102	96
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
								[%	6] ə	seə.	ioni	tsc	ා පි	nine	ys.	16J						

	100	368711	368917	369095	369255	369399	369533	369658	369777	369890	369998	370103	370203	370300	370392	370482	370567	370649	370727	370802	370873	370940
	95	368721	368926	369104	369262	369406	369539	369664	369782	369895	370003	370107	370207	370303	370396	370485	370570	370652	370730	370804	370875	370942
	6	368731	368934	369112	369269	369413	369546	369670	369787	369900	370007	370111	370211	370307	370399	370488	370573	370654	370732	370806	370877	370944
	85	368740	368943	369119	369277	369420	369552	369675	369793	369904	370012	370115	370214	370310	370402	370491	370576	370657	370735	370809	370879	370946
	80	368749	368951	369127	369284	369426	369558	369681	369798	369909	370016	370119	370218	370314	370406	370494	370578	370659	370737	370811	370881	370947
	75	368758	368960	369135	369291	369432	369563	369686	369803	369914	370020	370123	370222	370317	370409	370497	370581	370662	370739	370813	370883	370949
	20	368767	368968	369142	369297	369439	369569	369692	369808	369918	370025	370127	370225	370320	370412	370499	370584	370664	370741	370815	370884	370951
	65	368776	368976	369149	369304	369445	369575	369697	369812	369923	370029	370131	370229	370324	370415	370502	370586	370667	370743	370817	370886	370952
	60	368785	368984	369157	369311	369451	369581	369702	369817	369927	370033	370134	370232	370327	370418	370505 3	370589 3	370669 3	370746	370819	70888	370954
[%]	55	368793 3	368991 3	369164 3	369317 3	369457 3	369586 3	369707 3	369822 3	369932 3	370037 3	370138 3	370236 3	370330 3	370420 3	370508 3	370591 3	370671 3	370748 3	370820 3	370890 3	370956 3
Parking cost increase [%]	50	368802 3	368999 3	369171 3	369324 3	369463 3	369591 3	369712 3	369826 3	369936 3	370041 3	370142 3	370239 3	370333 3	370423 3	370510 3	370594 3	370673 3	370750 3	370822 3	370892 3	370957 3
arking co	45	368810 3	369007 3	369177 3	369330 3	369468 3	369597 3	369717 3	369831 3	369940 3	370045 3	370145 3	370242 3	370336 3	370426 3	370513 3	370596 3	370676 3	370752 3	370824 3	370893 3	370959 3
-	40	368818 3	369014 3	369184 3	369336 3	369474 3	369602 3	369722 3	369835 3	369944 3	370048 3	370149 3	70246 3	370339 3	370429 3	370515 3	370598 3	370678 3	370754 3	70826 3	370895 3	370960 3
	35	368826 30	369021 30	369191 30	69342 30	69480 30	369607 30	369727 30	369840 30	369948 30	370052 3	370152 3	370249 3	370342 3	370432 3	370518 3	370601 3.	370680 3	370755 3	370828 3	370896 3	370962 3
	30	368833 3(369028 36	369197 36	369348 3(369485 3(369612 36	369731 36	369844 36	369952 36	370056 37	370156 37	370252 37	370345 37	370434 37	370520 37	370603 37	70682 37	870757 37	370829 37	370898 37	370963 37
	25	841	369035 36	369204 36	369354 36	369491 36	9617	369736 36	369848 36	9356	0059 37	0159 37	0255 37	0348 37	0437 37	0523 37	0605 37	0684 37	0759 37	0831 37	LE 0060	0965 37
	20	368849 368	369042 36	369210 36	369360 36	369496 36	369622 369	369740 36	369852 36	369960 36	370063 37	370162 37	370258 37	370350 37	370439 37	370525 37	370607 37	370686 37	370761 37	370833 37	370901 37	370966 37
	15	368856 368	369049 369	369216 369	369365 369	369501 36	369627 369	369745 369	369857 369	369964 369	370066 370	370165 370	370261 370	370353 370	370442 37(370527 370	370609 370	370688 370	370763 370	370834 370	370903 370	370967 370
	10	368863 368	369055 369	369222 369	369371 369	369506 369	369631 369	369749 369	369861 369	369967 369	370070 370	370169 370	370264 370	370356 370	370444 370	370529 370	370611 370	370690 370	370765 370	370836 370	370904 370	370969 370
	5	368870 368	369062 369	369228 365	369376 365	369511 365	369636 369	369753 369	369864 365	369971 369	370073 370	370172 370	70267 370	370358 37C	370447 370	370532 370	370613 370	370691 370	370766 370	70838 370	370905 370	370970 370
	0		369068 369	369234 369	369382 369	369516 369			369868 369	369974 369	370076 370	370175 370	370269 370		370449 370	370534 370	370615 370	370693 370	370768 370	370839 370		-
		0 36887	5 369	10 369	15 369.	20 369	25 369641	30 369757	35 369	40 369	45 370	50 370	55 370	60 370361	65 370-	70 370	75 370	80 370	85 370	90 370	95 370907	100 37097
								[%	6] ə:	seə.	incr	tso	13 B	arin	ys.	ıвЭ						

Figure 63: Total emissions costs [€] and identification of the Rupture scenario in Turin

	100	3605	3400	3221	3062	2917	2783	2658	2540	2427	2318	2214	2114	2017	1924	1835	1749	1667	1589	1514	1444	1376
	95	3596	3391	3213	3054	2910	2777	2652	2534	2422	2314	2210	2110	2013	1921	1832	1746	1665	1587	1512	1442	1375
	6	3586	3382	3205	3047	2903	2771	2647	2529	2417	2309	2206	2106	2010	1917	1829	1743	1662	1584	1510	1440	1373
	85	3576	3373	3197	3040	2897	2765	2641	2524	2412	2305	2201	2102	2006	1914	1826	1741	1659	1582	1508	1438	1371
	80	3567	3365	3189	3033	2890	2759	2636	2519	2407	2300	2197	2098	2003	1911	1823	1738	1657	1580	1506	1436	1369
	75	3558	3357	3182	3026	2884	2753	2630	2514	2403	2296	2193	2095	1999	1908	1820	1735	1655	1577	1504	1434	1367
	20	3549	3349	3174	3019	2878	2747	2625	2509	2398	2292	2190	2091	1996	1905	1817	1733	1652	1575	1502	1432	1366
	65	3540	3341	3167	3012	2872	2742	2620	2504	2394	2288	2186	2088	1993	1902	1814	1730	1650	1573	1500	1430	1364
	60	3532	3333	3160	3006	2866	2736	2614	2499	2389	2284	2182	2084	1990	1899	1812	1728	1648	1571	1498	1428	1362
[%]	55	3523	3325	3153	2999	2860	2730	2609	2495	2385	2280	2178	2081	1987	1896	1809	1725	1645	1569	1496	1427	1361
Parking cost increase [%]	50	3515	3317	3146	2993	2854	2725	2604	2490	2381	2276	2175	2077	1984	1893	1806	1723	1643	1567	1494	1425	1359
arking cost	45	3507	3310	3139	2987	2848	2720	2600	2485	2377	2272	2171	2074	1980	1890	1804	1721	1641	1565	1492	1423	1358
	40	3499	3303	3132	2980	2842	2715	2595	2481	2372	2268	2168	2071	1978	1888	1801	1718	1639	1563	1491	1422	1356
	35	3491	3295	3126	2974	2837	2709	2590	2477	2368	2264	2164	2068	1975	1885	1799	1716	1637	1561	1489	1420	1355
	30	3483	3288	3119	2968	2831	2704	2585	2472	2364	2261	2161	2065	1972	1882	1796	1714	1635	1559	1487	1418	1353
	25	3475	3281	3113	2963	2826	2699	2581	2468	2361	2257	2158	2062	1969	1880	1794	1712	1633	1557	1485	1417	1352
	20	3468	3275	3107	2957	2821	2695	2576	2464	2357	2254	2154	2059	1966	1877	1792	1709	1631	1555	1484	1415	1351
	15	3461	3268	3101	2951	2815	2690	2572	2460	2353	2250	2151	2056	1963	1875	1789	1707	1629	1554	1482	1414	1349
	10	3453	3261	3094	2946	2810	2685	2567	2456	2349	2247	2148	2053	1961	1872	1787	1705	1627	1552	1480	1412	1348
	5	3446	3255	3089	2940	2805	2680	2563	2452	2346	2243	2145	2050	1958	1870	1785	1703	1625	1550	1479	1411	1347
	0	3439	3248	3083	2935	2800	2676	2559	2448	2342	2240	2142	2047	1956	1867	1783	1701	1623	1549	1477	1410	1345
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
								[9	(] ə	seə	incr	tsc	ත පි	nine	eys.	16)						

STARS

Appendix 11: Air pollution emissions and derived costs of others scenarios

The following tables contains the quantification of each pollutants deriving from private car fleet and car sharing fleets of Milan and Turin, for all the scenario described in par. 3.3. All tables contain a row named "Total [€]" that reports the economic evaluation of such quantification. In addition, one last row named "GAP [€]" report the cost difference between each scenario and the business as usual scenario (clearly Table 66 and Table 71, which refer to business as usual scenarios do not contain such differences). In this row, values marked in green represent savings for the city, while red values costs.

		Bu	siness as us	sual scenar	io - Milan			
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total
		length	CO ₂	NMVOC	NO _X	NH_3	PM _{2.5}	cost [€]
		sum [km]	emission	emission	emission	emission	emission	
			[t]	[t]	[t]	[t]	[t]	
Walk	245941	532978	-	-	-	-	-	-
Bike	109179	373213	-	-	-	-	-	-
Car	974248	22599125	3386.938	4.900	10.803	0.450	0.216	-
CS	17094	112584	9.872	0.005	0.005	0.001	0.000	-
PT	790935	9411337	-	-	-	-	-	-
Total	2137397	33029237	3396.810	4.904	10.808	0.451	0.216	-
Total [€]	-	-	339681	5395	274532	9745	28554	657907

Table 66: Business as usual scenario estimated air pollution daily costs - Milan

			All switch	scenario -	Milan			
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total
		length	CO ₂	NMVOC	NO _X	NH_3	PM _{2.5}	cost [€]
		sum [km]	emission	emission	emission	emission	emission	
			[t]	[t]	[t]	[t]	[t]	
Walk	236456	493587	-	-	-	-	-	-
Bike	100977	352664	-	-	-	-	-	-
Car	884653	21899534	3282.090	4.748	10.469	0.436	0.209	-
CS	201205	1590152	139.440	0.066	0.072	0.015	0.002	-
PT	714106	8580231	-	-	-	-	-	-
Total	2137397	32916168	3421.530	4.814	10.541	0.451	0.212	-
Total [€]	-	-	342153	5295	267739	9748	27944	652879
GAP [€]	-	-113069	+2472	-99	-6793	+2	-610	-5029

Table 67: All switch scenario air pollution costs and GAP analysis with BAU scenario - Milan

			Rupture	scenario -	Milan			
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total
		length	CO ₂	NMVOC	NO _X	NH ₃	PM _{2.5}	cost [€]
		sum [km]	emission	emission	emission	emission	emission	
			[t]	[t]	[t]	[t]	[t]	
Walk	237620	498587	-	-	-	-	-	-
Bike	101444	354421	-	-	-	-	-	-
Car	876774	21750638	3259.775	4.716	10.40	0.43	0.208	-
CS	202150	1641171	143.914	0.068	0.074	0.016	0.002	-
PT	719409	8665757	-	-	-	-	-	-
Total	2137397	32910574	3403.689	4.784	10.472	0.449	0.210	-
Total [€]	-	-	340369	5262	265989	9694	27765	649080
GAP [€]	-	-118663	+688	-133	-8543	-51	-789	-8827

Table 68: Rupture scenario air pollution costs and GAP analysis with BAU scenario - Milan

		All	electric rup	oture scena	rio - Milan	1		
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total
		length	CO ₂	NMVOC	NO _X	NH ₃	PM _{2.5}	cost [€]
		sum [km]	emission	emission	emission	emission	emission	
			[t]	[t]	[t]	[t]	[t]	
Walk	237620	498587	-	-	-	-	-	-
Bike	101444	354421	-	-	-	-	-	-
Car	876774	21750638	3259.775	4.716	10.40	0.43	0.208	-
CS	202150	1641171	0	0	0	0	0	-
PT	719409	8665757	-	-	-	-	-	-
Total	2137397	32910574	3259.775	4.716	10.398	0.433	0.208	-
Total [€]	-	-	325977	5187	264100	9357	27462	632084
GAP [€]	-	-118663	-13704	-207	-10432	-388	-1092	-25823

Table 69: All electric rupture scenario air pollution costs and GAP analysis with BAU scenario - Milan

	No car sharing scenario - Milan									
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total		
		length	CO ₂	NMVOC	NO _X	NH ₃	PM _{2.5}	cost [€]		
		sum [km]	emission	emission	emission	emission	emission			
			[t]	[t]	[t]	[t]	[t]			
Walk	247106	540653	-	-	-	-	-	-		
Bike	110402	381267	-	-	-	-	-	-		
Car	978925	22643459	3393.58	4.909	10.82	0.45	0.217	-		
Тахі	2055	-	-	-	-	-	-	-		
PT	798909	9463858	-	-	-	-	-	-		
Total	2137397	33029237	3393.582	4.909	10.824	0.451	0.217	-		
Total [€]	-	-	339358	5400	274941	9741	28589	658030		
GAP [€]	-	-	-323	+5	+409	-4	+35	+122		

Table 70: No car sharing scenario air pollution costs and GAP analysis with BAU scenario - Milan

Business as usual scenario - Turin										
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total		
		length	CO ₂	NMVOC	NO _X	NH ₃	PM _{2.5}	cost [€]		
		sum [km]	emission	emission	emission	emission	emission			
			[t]	[t]	[t]	[t]	[t]			
Walk	192856	332002	-	-	-	-	-	-		
Bike	27735	92717	-	-	-	-	-	-		
Car	684452	13496372	1982.356	2.394	5.892	0.253	0.122	-		
CS	4500	22805	2.004	0.001	0.001	0.000	0.000	-		
РТ	364532	3782642	-	-	-	-	-	-		
Total	1274075	17726539	1984.360	2.395	5.893	0.253	0.122	-		
Total [€]	-	-	198436	2635	149672	5472	16103	372316		

Table 71: Business as usual scenario estimated air pollution daily costs - Turin

	All switch scenario - Turin									
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total		
		length	CO ₂	NMVOC	NO _X	NH ₃	PM _{2.5}	cost [€]		
		sum [km]	emission	emission	emission	emission	emission			
			[t]	[t]	[t]	[t]	[t]			
Walk	181590	306244	-	-	-		-	-		
Bike	25578	84928	-	-	-		-	-		
Car	615010	13031078	1914.014	2.312	5.688	0.244	0.118	-		
CS	120924	924370	81.229	0.039	0.043	0.009	0.001	-		
PT	330973	3356660	-	-	-		-	-		
Total	1274075	17703280	1995.243	2.351	5.731	0.253	0.119	-		
Total [€]	-	-	199524	2586	145579	5473	15714	368877		
GAP [€]	-	-23259	+1088	-49	-4092	+2	-388	-3439		

Table 72: All switch scenario air pollution costs and GAP analysis with BAU scenario - Turin

Rupture scenario - Turin									
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total	
		length	CO ₂	NMVOC	NOx	NH ₃	PM _{2.5}	cost [€]	
		sum [km]	emission	emission	emission	emission	emission		
			[t]	[t]	[t]	[t]	[t]		
Walk	181590	306244	-	-	-	-	-	-	
Bike	25578	84928	-	-	-	-	-	-	
Car	613404	13021392	1912.591	2.310	5.684	0.244	0.118	-	
CS	122530	934056	82.080	0.040	0.044	0.009	0.001	-	
РТ	330973	3356660	-	-	-	-	-	-	
Total	1274075	17703280	1994.671	2.350	5.728	0.253	0.119	-	
Total [€]	-	-	199467	2585	145483	5471	15705	368711	
GAP [€]	-	-23259	+1031	-50	-4188	0	-398	-3605	

Table 73: Rupture scenario air pollution costs and GAP analysis with BAU scenario - Turin

	All electric rupture scenario - Turin									
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total		
		length	CO ₂	NMVOC	NO _X	NH ₃	PM _{2.5}	cost [€]		
		sum [km]	emission	emission	emission	emission	emission			
			[t]	[t]	[t]	[t]	[t]			
Walk	181590	306244	-	-	-		-	-		
Bike	25578	84928	-	-	-		-	-		
Car	613404	13021392	1912.591	2.310	5.684	0.244	0.118	-		
CS	122530	934056	0.000	0.000	0.000	0.000	0.000	-		
РТ	330973	3356660	-	-	-		-	-		
Total	1274075	17703280	1912.591	2.310	5.684	0.244	0.118	-		
Total [€]	-	-	191259	2541	144378	5274	15532	358984		
GAP [€]	0	-23259	-7177	-94	-5293	-197	-571	-13332		

Table 74: All electric rupture scenario air pollution costs and GAP analysis with BAU scenario - Turin

No car sharing scenario - Turin									
	Trips	Trips	Daily	Daily	Daily	Daily	Daily	Total	
		length	CO ₂	NMVOC	NO _X	NH ₃	PM _{2.5}	cost [€]	
		sum [km]	emission	emission	emission	emission	emission		
			[t]	[t]	[t]	[t]	[t]		
Walk	193213	333557	-	-	-		-	-	
Bike	28148	94349	-	-	-		-	-	
Car	686043	13505353	1983.675	2.396	5.895	0.253	0.122	-	
Тахі	246	-	-	-	-		-	-	
PT	366425	3793281	-	-	-		-	-	
Total	1274075	17726539	1983.675	2.396	5.895	0.253	0.122	-	
Total [€]	-	-	198368	2635	149744	5470	16109	372327	
GAP [€]	0	-23259	-68	+1	+73	-1	+6	+10	

Table 75: No car sharing scenario air pollution costs and GAP analysis with BAU scenario - Turin

Appendix 12: Additional outcomes used in the evaluation of the impacts on public spaces

The sum of the total number of trips reported in the last row is two times the number of car daily trips diverted to car sharing (97474 for the city of Milan and 71048 for the city of Turin), since here both the origin and the destination of each trip were considered.

		Origin		Destination				
Zone	Street (negative)	Parking (negative)	Garage (neutral)	Street (positive)	Parking (positive)	Garage (neutral)		
EXT	19591	1319	14624	36896	7178	3326		
1	7044	1611	1933	12231	122	3162		
2	1158	5200	492	1458	410	216		
3	8670	566	4932	3476	0	0		
4	947	0	5172	1537	3396	666		
5	41	0	81	97	42	0		
6	2999	419	2774	5684	373	206		
7	995	0	6185	3957	1372	469		
8	4546	8	189	1772	0	121		
9	4060	296	1622	8350	39	860		
Total	50051	9419	38004	75516	12932	9026		

Table 76: CS impacts on parking events resulting from the difference between rupture and BAUscenario in Milan

		Origin		Destination				
Zone	Street (negative)	Parking (negative)	Garage (neutral)	Street (positive)	Parking (positive)	Garage (neutral)		
EXT	6150	3424	22183	29448	5778	2531		
1	3356	974	418	5414	0	769		
2	7322	52	1766	4693	0	0		
3	4961	273	5649	2973	0	0		
4	1823	719	2124	4375	436	1056		
5	1968	403	2204	2392	0	0		
6	638	302	1030	1121	260	0		
7	0	0	1135	1888	52	264		
8	1096	243	835	5554	539	1505		
Total	27314	6390	37344	57858	7065	6125		

 Table 77: CS impacts on parking events resulting from the difference between rupture and BAU scenario in Turin